

A STUDY ON EFFECTIVENSS OF USING OFFICIALS

FOR REDUCING PRE-EVACUATION TIME IN A

LARGE AREA, BASED ON MULTI AGENT

SIMULATIONS

Rithika Dulam1, Maddegedara Lalith2, Muneo Hori3, Tsuyoshi Ichimura4 and
Seizo Tanaka5

1) Master Student, Earthquake Research Institute, University of Tokyo, Japan,

rithika.d@gmail.com
2) Asst. Professor, Global Center of Excellence for Sustainable Urban Regeneration,

University of Tokyo, Japan, lalith@eri.u-tokyo.ac.jp
3) Professor, Earthquake Research Institute, University of Tokyo, Japan,

hori@eri.u-tokyo.ac.jp
4) Assoc. Professor, Earthquake Research Institute, University of Tokyo, Japan,

ichimura@eri.u-tokyo.ac.jp
5) Asst. Professor, Earthquake Research Institute, University of Tokyo, Japan,

stanaka@eri.u-tokyo.ac.jp

ABSTRACT: We developed a multi agent code enhanced with high performance
computing (HPC) for simulating mass evacuations during catastrophic events like a
tsunami. A numerical simulation that models each individual among the millions is the
most viable method of predicting mass evacuation. We studied the effectiveness of
reducing pre-evacuation time with the help of officials like policemen, whose duty is to
personally encourage the residents to start evacuation immediately. The effectiveness of
the official agents is studied by varying their densities and level of influence. It was
found that even 0.5% officials can be effective in reducing fatalities in a tsunami.

Key Words: Multi agent simulation, Tsunami, Pre-evacuation time, Evacuation time,

Parallel programming.

INTRODUCTION

Natural disasters cause extensive damage to life and property, leading to a situation of chaos. To
reduce the impact of the disaster, prediction of mass evacuation for events, like tsunami, earthquake,
etc., holds great importance to ensure public safety. Reducing the evacuation time is the key issue in
tsunami disasters where the available time is less than 10 minutes for some areas. March 11, 2011 has
seen a devastating picture of tsunami in Japan. Real experiments for large area evacuation are
dangerous and numerical solutions are the only available solution at hand. There are a number of
numerical models available but Multi agent system is suited for the current situation as it models the
heterogeneity of human behavior quite well and helps us to produce possible trends of human
activities to be prepared for a disaster. According to a survey conducted among the survivors of the
2011 Tohuku tsunami hit regions, between Yamamoto-cho and Minami-sanriku-cho, pre-evacuation
time is more than 30 minutes. It has also been reported that comparatively less number of people heard
warnings or messages from the local government or the local mitigation centers. This pre-evacuation

Proceedings of the International Symposium on Engineering Lessons Learned from
the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan

1658

time depends on many factors like perceived importance, uncertainty of the warning, finding family
members, gathering valuables etc. Reducing this large pre-evacuation time is one of the most effective
means of reducing total evacuation time. Especially for areas with short tsunami arrival time,
reduction of pre-evacuation time is critically important.

Resorting to personalization would help reduce the evacuation time as it has been observed from

the survey that many people ignore or do not hear the mass communication messages. Officials of the
community, who have complete knowledge of their neighbourhood, could be employed to personally
instruct the people to evacuate or inform them of the nearest and safest evacuation center, depending
on the intensity of the disaster. We need to identify the density, distribution, functions performed, as
well as the legal strength of enforcing the instruction. However, quantitative study of the effectiveness
of these factors is difficult for a large urban area; no experiment is feasible for large area evacuation
involving millions of people and small area experiments do not render a correct picture due to
contagious and cascade effects of mass evacuation. This requires the HPC enhanced MAS with smart
and intelligent agents so as to help the evacuees.

The current study of MAS is a part of much larger effort of developing a module to simulate

actions taken by individuals and communities in an Integrated Earthquake Simulation (IES). IES is
seamless simulation of earthquake wave propagation from source to the site seismic structure response
of the buildings in a large urban area and the response of communities (Hori et al). The existing MAS
code is developed for an earthquake simulation in crowded areas like shopping malls, train stations etc.
Its development is based on the commonly known KISS (keep it simple and stupid) principle in multi
agent simulations. Open space navigation needs sophisticated agents as human brain perceives closed
and open environments quite differently. Also, there is a requirement for smarter agents with greater
abilities like the officials to help the evacuees. For simulation of such smart and sophisticated agents in
large number in a large domain, clearly, the current state is insufficient. Hence, a new KISS (Keep It
Smart and Sophisticated) principle for the agent development along with HPC must be employed to
satisfy the requirements.

In section 2, the methodology of the current model which includes the behavior of the agents, the

environment and the generation of the officials is discussed. Section 3 explains about the steps
involved in the verification of the model. Section 4 deals about the effectiveness of the officials in
reducing the preparation time. Section 5 concludes the paper along with the possible future work.

METHODOLOGY

The behavior of the agents is improved for smooth navigation in open environments. The algorithms
developed are discussed below. The key issue tackled is to test the effectiveness of the officials in
reducing the pre-evacuation or preparation time of the evacuees. The functions of the officials are also
discussed in this section.

The environment of the MAS model is a model describing the configuration of public space. The
GIS data is automatically converted into the MAS domain data. It is a structured raster type domain
having a grid size of 1m2, consisting of obstacle cells and open cells. The agents are allowed to

Figure 1: Vector type GIS data is converted into a raster type MAS environment

1659

move around in the open cells avoiding the obstacles. The raster environment used for the current
simulation is shown in Fig. 1.

Improved behavior of the Agents

The agent in the model has three basic functions, namely See(), Think() and Move(), which represent
the human’s most important features. The functions, which are self explanatory, are the vital aspects of
the simulation.

The vision and the decision making are improved for agents to navigate smoothly in wide open
areas. As mentioned, the former code is designed for simulating evacuation in a crowded environment
like shopping malls, train stations, etc. The area influencing the decision, which is the visual distance
in the current model, was restricted to a very small radius of 1.5m, since larger radius is insignificant
in crowded environments. The vision radius is increased to 30m so that agents can identify various
features of their surrounding and navigate smoothly in urban areas. A good and compatible vision and
decision making model assures a smooth agent motion, a key for human modeling.

Agent vision model
Visual Perception is an important function of the agent model as the Think() function just analyzes the
information generated by the vision. For the current simulations, the vision radius is set to 30m since
further increase does not show a significant improvement of agents’ movements. An agent scans the
360o vision field at dθ intervals, similar to radar, and collects the grid cells in the line of sight. The
value of dθ is set such that arc length with visibility radius is 50% of the grid size (dx) (i.e. visibility
radius × dθ = 50% of the grid size). For 30m visibility radius, dθ is set to 1o. Currently, the agent
vision is only horizontal, hence the elevation of the cell is not considered. Fig. 2 shows the vision of
the agent and how it perceives the environment.

Decision making model
The pivot of the agent model is the decision making function. In function Think(), it analyzes the data
collected through the vision model and takes a decision, depending on its surroundings and the final
destination. The agent scans through the view data, collects all the available paths and chooses the
closest path to the final destination vector.

The movement in raster environment is quite difficult, as identifying the features like the shape of
buildings, junctions or roads is complicated. The agent can only recognize the open cells and obstacle
cells; it is difficult to prevent the agents moving towards dead ends or to block them when moving
towards already explored areas. There are many possibilities that an agent loops around in an area for
a long time due to the complexity of the urban environment. Such agents are identified and A*
algorithm is used to find the path to move out of the looping area. Once, an agent moves out of the
trapped region, the former Think () function resumes.

Figure 2: Vision Perception of an agent

1660

Officials and their functions

The officials are smart agents with greater abilities, like the police, rescue officers, etc. They help
people evacuate to safer areas. The main function of an the official is Guide() in which an official asks
an agent to start evacuation immediately, using his influence power. The official searches in his
visibility, for agents who have not started their evacuation and moves towards them. When the target
agent is within the officials influence radius, the official informs him about the situation, the coming
tsunami and suggests him to start evacuation immediately. This influence radius is considered as the
conversational distance. Various influence radius, 2.5m. 5.0m, 10.0m, 20.0m, 30.0m have been tested
and it was found that there is no significant difference in 2.5m and 10.0m; the extra 7.5m travelled by
the official to reach the agent is less significant. However, a value of 2.5m has been used for the
simulation. In Fig. 3, the movement of the official is shown through the sequence of snapshots from
left to right and top to down. We can see the official, the red cone, moving to each of the agents in his
visibility and asking them to evacuate. As soon as the agent is in the influence radius of the official,
the agent starts to evacuate.

An object oriented language, C++ has been used to code the current MAS program. C++ is quite

suitable for programming MAS, as each component can be coded as an object. The model takes full
advantage of the key features of C++ like inheritance, polymorphism, data encapsulation etc.

PARALLEL PERFORMANCE

As suggested previously, for rendering a correct picture of the effects of mass evacuation, simulation
of large numbers of people in a huge urban area is required. Simulating 30 minutes period of
evacuation with 5000 people, in 1 km2 urban environment, requires around 5 hours on a single CPU.
Hence, the unavoidable requirement of parallel processing is clearly seen. A distributed computing
model with Message Passing Interface (MPI) is used in the current program. To balance the work load,
the domain is partitioned such that each processor core is allotted approximately equal number of
agents. When an agent moves across the partition boundary, he is permanently moved to the
corresponding CPU. Once significant load imbalance is observed due to this agent movement among
CPUs, the domain is repartitioned to reassign balanced loads to CPUs.

Improving the Performance

 Existing MAS based crowd simulations have achieved limited scalability on small number of
CPUs. With several strategies, we attained super linear scalability up to 128 CPU cores with 500,000
agents. The main strategies used are: 1) virtual CPU topologies; 2) reducing the frequency of
communications for ghost layer updates; 3) hiding the communications and minimizing the data
volume; 4) minimize data exchange in repartitioning.

Figure 3: Movement of an official

1661

Virtual CPU topologies
We use a 2D-tree algorithm to decompose the domain into square regions with nearly equal

number of agents. Although this partitioning strategy does not minimize the communication data
volume, the simple geometry makes it easier to handle agent movements between partitions. A major
disadvantage of 2D-tree based partitioning is that we cannot take the advantage of communication
topology of underlying hardware; the communication patterns between partitions are too irregular.
However, the distributed graph topology interface of MPI 2.2 standard provides a more user friendly
interface, to better match the communication pattern of the partitions.

Reduction of the frequency of ghost layer updates

This is the main strategy for going beyond linear scalability, which is made possible by
maintaining wide ghost regions (overlapping between two partitions). The human agents needs the
ability to see far to detect obstacles, other agents and slow moving agent groups. This requires
maintaining a wide ghost region, which should be larger than the visibility distance of 30 to 100m.
Surely, this requirement significantly increases the communication overhead. However, in human
crowd simulations, this wide ghost boundary can be used to gain high scalability. To explain, the
terminology introduced in Fig. 4; a partition assigned to a CPU is further subdivided as shown. To
avoid slow moving crowds an agent needs to see the other agents at far end of his visibility. Therefore,
a small error in the position of agents at the far edge of receive region does not affect the agents inside
a partition. This allows skipping several ghost layer updates and maintaining the continuity by
executing the agents in the ghost layer in a certain order along with the inner agents and boundary
agents. The number of steps to be skipped should be selected to minimize the propagation of any error
into a partition from the agents at the far edge of receive region. Depending on the distance of agent's
visibility, ghost updating at every 5-10 time step is sufficient (time interval is 0.2s). This significantly
increases the scalability parallel extension of evacuation module.

Hiding communications and minimizing data volume exchanged

Compared with particle physics type simulations, of similar category, like SPH or N-body,
sophisticated and smart agents involve 10 to 20 times data. Further, sophisticated agents have
dynamically growing variables like memory of past experiences. To deal with this large data volume,
only the recent updates of dynamic data and essential data for ghost updating is exchanged during
ghost update. Further, the ghost update communication is hidden by executing the agents in a certain
order.

Minimizing data exchange in repartitioning

Migration of agents from a partition to another brings load imbalance. When significant load
imbalance occur, repartition is necessary to maintain equal workloads. Repartitioning is a very
expensive step since human agents have large set of data. With 2D-tree, it is observed that most of the

Figure 4: Partitioning of the agents in each CPU Figure 5: Scalability of the program up to 128
CPUs

1662

agents remain in the same CPU even after repartitioning, unless MPI_Dist_graph_create() maps the
partitions to different CPUs. The repartitioning algorithm detects whether the same partition is assign
to a CPU and exchanges only the newly assign agents. The point to note, here is that the interval
should be such that it should not affect the movement of the boundary agents of the neighbouring cpu.
This drastically reduces the communication overhead in repartitioning, which lowers any performance
degeneration due to repartitioning.

Scalability

The effectiveness of the above major strategies was tested by conducting a series of simulations
with 500,000 agents in a dense part of Kochi city, Japan. A DELL cluster with QLogic 12200 Infini
Band switch and 16 computation nodes, each with hexa-core Intel Xeon X5680 CPUs and 47GB
DDR3 memory, is used for the simulations. As shown in Fig.5, the above strategies have even pushed
the scalability into the super linear region; super linear behavior is due to the nonlinear reduction of
time for an agent to find its neighbors, when the number of agents in a CPU is halved.

VERIFICATION OF THE MODEL

In the process of verifying the simulation results, we have considered the evacuation of 1000 agents in
a grid tile, of 800x600 cells, without the obstacles or building data. It is essentially a 1 dimensional
problem, as the agents move straight to the exit without travelling any extra distance. Graph 1 shows
the evacuation times of the agents considered with different settings; 1) no preparation time and
velocity being constant, 2) no preparation time with varying velocities, 3) constant preparation time
with varying velocity and 4) varying preparation time with varying velocities. The values of the
preparation time were taken from the survey, mentioned in the introduction and are shown in Table 1.
As shown in Graph 1, all the four cases produced the analytically expected behavior. This shows the
ability of the developed MAS model in producing the desired results.

 EFFECTIVENESS IN REDUCING PRE- EVACUATION TIME OF EVCUEES

As mentioned previously, the main objective of the simulation is to reduce the possibly large
pre-evacuation time of the people by employing the officials. The effectiveness of the officials was
examined by conducting various simulations explained as under. The basic parameters of the
simulation are shown in table [1].

Graph 1: Evacuation Times without obstacles

1663

Parameter Values
Average moving speed of Evacuees [m/s]

Normal
Slow

1.4
1.1

Standard deviation of moving speed of
Evacuees [m/s]

Normal
Slow

0.6
0.3

Moving speed of officials[m/s] 3.0
Average preparation time [seconds] 1000
SD of preparation time [seconds] 240

Problem Setting

The current simulation is conducted on an urban city environment of Kochi city (GIS Tile ID: O-16);
Fig.6 shows the domain used for the simulation.

The developed HPC enhanced MAS code can simulate up to millions of agents. However, a small

problem of 1000 agents in an area of 0.48 km2 (a grid of size, 800x600 cells) is considered in this
preliminary study. The density of officials is increased from 0.5%, 1%, 3%, 5% and 10%.

Graph 2 presents the cumulative evacuation time with varying velocity and varying preparation

time. Case-1 is the ideal, without preparation time, case-2 to case -7 have varying preparation time

Graph 2: Evacuation time with obstacles

T ABLE 1: PARAMETERS USED IN THE SIMULATION

Figure 7: Urban Kochi city, Tile L11- R15 Figure 6: A dense urban grid tile of Kochi city [O-16]

1664

with increasing number of officials from 0%, 0.5%, 1%, 3% 5 % and 10% respectively. We can
observe that the usage of 0.5% officials has significant effect on the evacuation times of the agents.
The irregularity of each graph shows the complexity of the problem, where more than one parameter,
like speed, distribution of agents, preparation time and complexity of the environment, is in question.
The evacuation time has shown considerable difference with every increase of number of officials. It
can also be noted that the usage of 3%,5% and 10% have obtained almost similar results, stating that a
usage of 0.5% officials has shown considerable improvement.

We have considered a larger domain of 16.5 km2 with 35 grid tiles (L11 - R15) of Kochi city

(Figure 7), with 10000 and 20000 agents respectively. The density of officials is increased from 0.5%,
1%, 3%, as we have observed that 5% and 10% officials does not show much difference.

It can be observed from Graph 3 and Graph 4 that the behavior is similar to 1000 agents case

(Graph 2) with each increase of the percentage of officials. Hence, in a mass evacuation of 20000
people, it can be stated that employing officials is quite positive.

CONCLUSIONS

A HPC enhanced MAS code is developed for simulating mass evacuation in a large urban area. We
studied the effectiveness of reducing pre-evacuation time, using officials to personally instruct the
residents to evacuate immediately. The officials are employed to personally go to an agent and ask him
to start evacuation immediately. This behavior of the officials has resulted in quite significant decrease
in the total evacuation times of the evacuees. An optimum level of 3% officials is found to show
satisfactory results almost similar to using 10% officials. A similar effect can be expected with using
0.5% officials with other factors which help in reducing the evacuation time. Since simulating large
urban area is computationally intensive, we enhanced our code with HPC and attained super linear
scalability up to 128 cores with half a million agents. The Evacuation time can further be reduced by
improving the functions of the official and by employing the resident leader agents who have less
influence power but can help in passing information to the evacuees.

REFERENCES

M.Hori, T.Ichimura and K.Oguni (2006), “Development of Integrated Earthquake Simulation for estimation of

strong ground motion, structural responses and human actions in urban areas”, Asian Journal of Civil
Engineering (building and Housing), Vol.7, No. 4, 381-392.

M.Hori, “Multi Agent Simulation for evacuation process analysis”, Introduction to Computational Earthquake

engineering, Chapter 14. 317-358.

Graph 3: Evacuation time with 10000 agents
in L11 - R15 grid

Graph 4: Evacuation time with 20000 agents
in L11 - R15 grid

1665

