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ABSTRACT: The Tohoku Earthquake occurred and caused a huge tsunami. The Fukushima 
Dai-ichi NPP were attacked by the tsunami and core damage occurred. In risk evaluation 
practice for seismic and tsunami events, no consideration have been taken on dependency of 
ground motion effects and tsunami effects. The concept and important issues for developing 
seismic-tsunami PSA methodology considering the combination of seismic and tsunami 
events at multi-units are described.  
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1. INTRODUCTION 
 

The Tohoku earthquake (Mw9.0) occurred at 14:46 on March 11, 2011, and caused a huge tsunami. 
strong seismic motion was observed at the Fukushima Dai-ichi NPP (F1-NPP) and reactors were shut 
down after control rods had inserted. While the reactors were shut down normally, they were attacked 
by tsunami about 46 minutes after the earthquake occurred. Various equipment of the water intake 
system and emergency diesel generators were flooded. External power supply was also lost due to 
damage by strong ground motions and tsunami. In this situation, station blackout took place. As a 
consequence, functions of reactor cooling system was lost, core damage (CD) occurred and 
radioactive materials were released to the off-site area (Japanese government 2011). 

In risk evaluation practice for seismic and tsunami events, no consideration have been taken on 
dependency of seismic ground motion effects and/or tsunami effects, and seismic PSA and tsunami 
PSA have been developed independently for efficiency. Both of each evaluation methods are 
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composed of the four items (Hirano 2008), (Sugino 2008): 
(1) setting of accident scenarios,  
(2) hazard evaluation,  
(3) fragility evaluation and  
(4) accident sequence evaluation.  

Based on the lessons learned from the accident of F1-NPPs, development of "seismic-tsunami PSA 
(S-T PSA)" considering combination of seismic motion and tsunami effects is urgently required. 

This paper describes the overview of F1-NPP accident and the outlines of seismic PSA and 
tsunami PSA. Further the paper represents the concept and important issues for developing S-TPSA 
methodology considering the combination of seismic and tsunami events at multi-units.  

 
 

2. OVERVIEW OF FUKUSHIMA NPP ACCIDENT AND LESSONS LEARNED 
 
2.1 Overview of F1-NPP accident at Tohoku earthquake/tsunami 

 
The F1-NPP station is a multi-units site with 6 BWRs. The NPPs detected strong seismic motions of 
the 3.11 Tohoku Earthquake and control rods were inserted automatically. However seawater supply 
system (seawater pump, switchboard (switchgear) / signal-processing board (motor control)) for 
seawater pump and also emergency power supply system (diesel generator (DG), DG switchboard 
(switchgear) / signal-processing board (motor control)) in the support line were flooded due to the 
tsunami as shown in Fig.1, and as a result all of seawater supply systems / emergency power supply 
systems were lost in function simultaneously. Function of interconnected power supply between 
neighboring Units (Units 1 and 2, Units 3 and 4, and Units 5 and 6) was lost. Breakers and emergency 
transformer in the switchyard were damaged, and a transmission line tower out of the site was 
collapsed, and offsite power supply was lost. These results led to loss of all AC power (station 
blackout) (Japanese government 2011). 

On the other hand rector core isolation cooling system (RCIC), which is steam-driven cooling 
system, in the front line (FL) was operated during a certain time but it stopped after a short time 
operation. Cooling systems in FL other than RCIC (and high pressure coolant injection system (HPCI) 
or isolation condenser (IC)) were not operated due to loss of AC power. Failure of reactor core cooling 
resulted in core damage (core melt) in about 5 or 6 hours. Temperature and pressure in the primary 
containment vessel rose up, and radioactive materials were released through seals to the on-site and 
the off-site. The land in wide area was contaminated by the radioactive materials (Japanese 
government 2011). Information relevant to the accidents has not always been provided to the public in 
a proper manner.  

 
 
 
 
 
 
 
 

Fig.1 Situation of tsunami and disaster at Fukushima Daiichi nuclear power plant 
 

2.2 Lessons learned from accident 
 
The issues of seismic engineering based on lessons learned from F1-NPP accident are as follows:  

① Occurrence of gigantic earthquake and tsunami, and combination of seismic hazard and 
tsunami hazard 

② Risk evaluation of multi-units 
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③ Combined emergency of both natural disaster and nuclear accident  
④ Core damage during short time based on functional failure of support systems(seawater 

supply, power supply and signal systems) 
⑤ Common cause failure of multi structures and components 
⑥ Dependency among neighboring units 
 
 

3. OUTLINE OF SEISMIC PSA AND ITS USABILITY 
 
3.1 Procedure of the Seismic PSA 
 
The procedure of seismic PSA consists of 5 steps as shown in Fig. 2 (Hirano 2008).  

- Step 1: Collection of information related to earthquake and setting of accident scenario 
- Step 2: seismic hazard evaluation 
- Step 3: Fragility evaluation 
- Step 4: Accident sequence evaluation 
- Step 5: Documentation 

 
3.2 Collection of information related to earthquake and setting of accident scenario 

 
The collection of information related to earthquake and setting of accident scenario is shown in Fig. 2. 
At first, relevant information should be gathered. Then, conduct “plant walk-down” based on the 
gathered information. Finally, set various accident scenario based on gathering relevant information 
and the result of “plant walk-down”. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Procedure of seismic PSA 
 
3.3 Seismic hazard evaluation 

 
The seismic hazard evaluation is shown in Fig.3. In the evaluation of seismic hazard, set “specified 
source model” for active faults and set “zone source model” for diffuse seismicity. Strong motions are 
evaluated for these source models by using propagation model (fault model method and attenuation 
model). Then, like this seismic hazard curve should be derived with the uncertainty.  

The uncertainties do exist in the source models and propagation models of seismic motion described 
above. The uncertainties are consisted of “aleatory uncertainty” that is accompanied with 
phenomenology and “epistemic uncertainty” that is accompanied with lacks of recognition and 
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information. Evaluation of uncertainty is conducted by using logic tree (LT) with this epistemic 
uncertainty as a target as shown in Fig. 4. 

 
 

 
 
 
 
 
 
 
 
 
 
  Fig.3 Procedure of seismic hazard evaluation          Fig.4 Outline of logic trees 
 
3.4 Fragility evaluation 
 
3.4.1 Targeted Structures and components 
In the evaluation method of fragility, targeted buildings, structures and components are those classified 
as “class S” which is the most important class on seismic safety as shown in Fig. 5. Those classified as 
“class B” and “class C” which would affect safety are targeted as well. These buildings, structures and 
components include reactor building, outside structures and inside components. Inside components are 
categorized as static and dynamic components. Each category are consisted of components of 
mechanical system and those of electrical system. 

On the Seismic PSA, structures and components targeted to evaluate are about 200 and categorized 
as about 50 areas on fault Trees. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Structures and components to be evaluated    Fig.6 Procedure of fragility evaluation 
 
3.4.2 Fragility evaluation method 
The fragility evaluation method by using components installed in a reactor building is shown in Fig. 6. 
In the response evaluation of this component, the seismic motion at the bedrock is set up. Then, the 
response analysis of soil, buildings and components against this seismic motion is conducted and 
evaluation would be made with including dispersion. On the fragility evaluation, seismic motion level 
at the bedrock would be increased like 200 Gal, 400 Gal, 600 Gal, and derive distribution of each 
responses. Fragility curves are obtained as the conditional probability that the realistic response of 
component exceeded its capacity as shown in figure. The capacity of targeted components is evaluated 
by including dispersion. 

On the fragility evaluation, the evaluation of functional failure limit of structures and components 
on the capacity evaluation is extremely important. 
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⇒ about 200
- Structures & Components 
for capacity evaluation

⇒ about 50

- Structures & Components 
including into fault trees

⇒ about 200
- Structures & Components 
for capacity evaluation

⇒ about 50

- S class components
- Part of  B and C class  
components
(important safety-related  
components)

- S class components
- Part of  B and C class  
components
(important safety-related  
components)

(1) Buildings
- Reactor building
- Control building, etc.

(2) Outside: Structures and components
- Seawater pit, seawater duct,
transformers, etc.

(3) Inside: Components
- Static components

- Mechanical comp.: tanks, heat  
exchangers, reactor pressure  
vessel, containment vessel, etc.

- Electrical comp.: condenser, etc.
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3.5 Accident sequences evaluation 

 
In case of evaluating accident sequences, the accident sequences are represented by using event tree 
based on various accident scenario considered in chapter 4. Then develop fault trees that consists each 
event trees as shown in Fig. 7. 

Core damage probabilities (CDPs) are evaluated by using event trees, fault trees and fragilities of 
components as shown in the Fig. 8. The CDF is estimated by multiplying the seismic hazard curve per 
Gal by CDP curve, and it is corresponded to the area of this semicircular shape that is calculated by 
integration for seismic motion acceleration (Gal).  

In general, the range of seismic motion that might contribute to CDF is from 1 to 2.5 times of 
design basis seismic motion S2 in Japan. The range of Exceedance frequency on seismic hazard is 
from 10-3 to 10-5 (1/year). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Fig.8 Procedure of core damage  
   Fig.7 Accident sequence evaluation      frequency (CDF) and dominantly 
            contributing ranges of seismic motion 
 

Table 1 Comparisn table of accident scenario of seismic PSA and Kashiwazaki NPP 
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3.6 Usability of seismic PSA 
 
The Niigata-ken Chuetsu-Oki earthquake (NCO) was occurred in the vicinity of Kashiwazaki-Kariwa 
NPP (KK-NPP) in July 2007. The KK-NPP is consisted with 7 reactor units. Seismometers had been 
installed in and outside of buildings and many seismic motions are recorded. 

The table 1 shows the comparison between the accident scenario of seismic PSA and accidental 
event occurred at the NCO earthquake. The accident scenario of seismic PSA was described in the 
seismic level -1 PSA Implementation standards that was compiled by Atomic Energy Society of Japan 
in March 2007 that is one and a half year before the occurrence of the NCO earthquake. The contents 
described in the seismic PSA implementation standard identified well about the points occurred at the 
NCO earthquake. It clearly showed further usability of seismic PSA method. 

 
 

4. OUTLINE OF TSUNAMI PSA AND ITS USABILITY 
 

4.1 Procedure of the Seismic PSA 
 
The procedure of tsunami PSA consists of 4 steps as shown in Fig.9 (Sugino 2008).  

-Step 1: Collection of information related to earthquake and setting of accident scenario 
- Step 2: Tsunami hazard evaluation 
- Step 3: Fragility evaluation 
- Step 4: Accident sequence evaluation 

 
4.2 Collection of information related to earthquake and setting of accident scenario 

 
The collection of information related to earthquake and setting of accident scenario as shown in Fig.10, 
at first, relevant information should be gathered. Then, conduct “plant walk-down” based on the 
gathered information. Finally, set various accident scenario based on gathering relevant information 
and the result of “plant walk-down” as shown in Fig. 10. 

The accident scenario should be identified with dividing cases for tsunami run-up and backwash. 
Following accident scenario are assumed in case of tsunami run-up as shown in this figure.  

-Function loss of sea water pump 
- Functional loss of power supply system 
- Functional loss of DG oil tank 
- Function loss of sea water intake pit 
- Function loss of sea water facilities by debris flow attack 
- Functional loss of sea water intake function by deposition of sea sand 
- Turn over of sea water pump cause by tsunami backwash 

 
4.3 Seismic hazard evaluation 

 
The seismic hazard evaluation is shown in Fig. 11. The tsunami hazard evaluation is defined by the 

tsunami wave height at shoreline and its exceedance frequency.  
In case of evaluating tsunami hazard, tsunami source models for both near-field active faults and 

far-field earthquakes such as Chile earthquake should be set. Then, ocean floor topographic model 
should be set by dividing it for far-field and near-field. In addition, onshore topographic models are set 
to evaluate onshore run-ups.  

The LTs are developed by considering uncertainties of tsunami source models, ocean floor 
topographic models and onshore topographic models. Conduct tsunami simulation for paths of each 
LTs, and obtain tsunami hazard curve. 

The tsunami hazard curve is needed to obtain in cases of both tsunami run-ups and tsunami 
backwash as shown in Fig.12. 
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Fig.9 Procedure of tsunami PSA  Fig.10 Collection of information related to earthquakes  

and setting of accident scenario 
 
 
 
 
 
 
 
 
 
 
 

     
 

Fig.11 Procedure of tsunami hazard evaluation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Fig.13 Example of tsunami fragility evaluation 
 Fig.12 Procedure of tsunami fragility evaluation 
 
4.4 Tsunami fragility evaluation 
 
4.4.1 Procedure of tsunami fragility evaluation 
Fig. 12 shows the evaluation procedure of tsunami fragilities. On the fragility evaluation of tsunami, 
fragility curves are obtained as the conditional probability that tsunami wave height exceeded the 
installation height of targeted structures and components as shown in figure.  
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Tsunami wave heights are evaluated by conducting analysis of onshore run-ups to the area that 
targeted buildings, structures and components are installed. Evaluate uncertainties and dispersion of 
the wave heights of tsunami wave run-ups. 
 
4.4.2 Damage part, damage mode and its physical quantities for evaluation of tsunami fragilities 
It is important to identify the modes on function failure against tsunami in case of targeting facilities 
outside and inside of buildings. It is also important to identify their functional failure limits and 
intensities of tsunami. The intensities of tsunami are consisted of tsunami wave height, tsunami wave 
force, scour etc. 

The failure parts, failure modes and physical quantities representing functional failure limits are 
different for each targeted structures and components. For quantitative evaluation of tsunami margins, 
attention should be paid that physical quantities representing margins would differ as the failure parts 
and failure modes to be evaluated are also different based on targeted structures and components. 
 
4.4.3 Examples of Fragility Evaluation 

Fig. 13 shows an example of fragility evaluation. The results on analysis of onshore run-ups of 
tsunami are shown for targeted point in the Fig. 13. This figure shows the result of fragility evaluation 
in case of assuming the installation point of reactor building is 600 m distant from the shoreline, and 
function failure is occurred when tsunami run-ups reaches to the building.  
 
4.5 Accident sequence evaluation 

 
In case of evaluating accident sequences, the accident sequences are represented by using event tree 
based on various accident scenarios considered in chapter 4. The evaluation method as shown in Fig. 
14 is the same as that of Seismic PSA. 

The accident scenarios of Tsunami are developed in cases of both tsunami run-ups and tsunami 
backwash. Fig. 15 shows the event tree based on an accident scenario for tsunami run-ups. The 
accident scenario starts from the function failure of facilities outside buildings and spread out to 
function failure inside buildings, and finally reaching core damage. The ET of tsunami is very simple 
as shown in the figure. The ET based on an accident scenario for tsunami backwash is also developed. 
The event tree in case of tsunami backwash is simpler than the case of tsunami run-ups. 
 
4.6 Usability of tsunami PSA 

 
The Tohoku earthquake was occurred off the coast of Tohoku district in March 2011 as shown in Fig. 
1. The tsunami of the Tohoku earthquake attacked the F1-NPP with the wave height that is about 2 
times larger than the design basis tsunami wave height. 
 

         Table 2 Comparison results between 
           tsunami PSA and Fukushima NPP 

 
 
 
 
 
 
 
 
 

 
 

Fig.14 Procedure of tsunami accident sequence evaluation 
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outdoor
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Table 2 shows the comparison between the assumed accident scenario of tsunami PSA developed 

by JNES and accidental event occurred at the Tohoku earthquake. The assumed accident scenario of 
tsunami PSA was identified by JNES from 2006 as a part of developing tsunami PSA method.  

The contents of tsunami PSA developed more than a year ago identified well about the points 
occurred at the F1-NPP. It clearly showed further usability of Tsunami PSA method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.15 Example of accident sequence by run-up tsunami 
 

 
5. CONCEPT OF SEISMIC-TSUNAMI PSA METHODOLOGY 

 
5.1 Concept of development 

 
The concept and important issues for developing seismic-tsunami PSA methodology considering the 
combination of seismic and tsunami events at multi-units are described..  
 
5.2 Setting of accident scenarios 

 
Four cases of seismic and tsunami accident scenario are shown in Fig.16; 

Case 1: Seismic (no CD) and Tsunami (no CD), 
Case 2: Seismic (no CD) and Tsunami (with CD), 
Case 3: Seismic (with CD) and Tsunami (no CD) and 
Case 4: Seismic (with CD) and Tsunami (with CD).  

Of the four cases shown herein, Case 1 is the safe case, while other three are cases with core 
damage occurrence. While it is clear that the nuclear accident at Fukushima I NPS corresponds to Case 
2, general framework of seismic-tsunami PSA should incorporate all the four cases.  
 
5.3 Seismic-tsunami hazard evaluation 

 
The hazard for the external event at the multi-unit NPPs is evaluated. Seismic and tsunami hazard 
evaluations are practiced by developing hazard curves for seismic motion and tsunami height, 
respectively as shown in Fig.17. They are plotted against annual frequency of exceedance. Seismic 
hazard curves and tsunami hazard curves are not independent because they are based on common 
seismic events. But different nature of strong seismic motion (period range: 0.1~1sec) and tsunami rise 
time (period range: 10~120sec) requires careful consideration of their source characterization. Because 
of such difference in period ranges, correlated seismic motions at multi-unit locations should be 
considered, while tsunami height can be treated as more or less uniform within a single site. 
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○：Intact
×：Function loss

1583



 

5.4 Seismic-tsunami fragility evaluation 
 

In fragility evaluation, structures and components of multi-unit reactors are covered and correlation of 
their failures should be considered. The functional failure probability (fragility: ( )h,F TS

i α− ) with 
conditions that an arbitrary component“i” will secure its function against seismic motion α but fail 
against tsunami h is represented as equation (1) and shown in Fig.18; 

( ) ( ) ( ) ( )( ) ( )hFF1hFFh,F T
i

S
i

T
i

S
i

TS
i ×α−=×α=α−                        (1) 

Where ( )αS
iF and ( )hFT

i  are functional failure probability of component “i” against α and h, 

respectively. ( )αS
iF  is functional success probability of component “i” against α. 

In seismic-tsunami fragility evaluation, it is important to consider the fatigue effect of structure and 
component under seismic motions by main shock and gigantic aftershock.  
 
5.5 Seismic-tsunami accident sequence evaluation 

 
In accident sequence evaluation involving CD, all of the Cases 2~4 should be incorporated. The total 
CDF is represented by CDF(S-T) = CDF(Case2)+CDF(Case3)+CDF(Case4). In case of considering 
combined seismic and tsunami effects, CDF(S-T) will be higher than CDF(S), the cases of seismic 
actions alone, because of contributions of Case 2.  

 
 

 
Fig.16 Cases of accident scenarios on seismic-tsunami PSA  Fig.17 Definition of hazard on  
         seismic-tsunami PSA 
 
 
 
 
 
 
 
 

Fig.18 Concept of fragility evaluation on seismic-tsunami PSA 
 
 

6.  CONCLUSIONS 
 
The summarizations of this paper are as follows. 
(1) Usability and application of PSA 

1) PSA is a usable method to identify important accident sequence, system and components for 
safety and these results are candidates to take countermeasures as AMs. 

2) PSA is an effective measure to evaluate AM’s effectiveness. 
(2)Improve IAEA/ISSC’s guideline on PSA of external events 

1) JNES will develop and improve seismic hazard method considering gigantic aftershock. 
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2) JNES will also develop and improve seismic-tsunami PSA method considering combination of 
seismic and tsunami events. 

3) JNES will contribute improvement of IAEA’s guideline on PSA of external events through new 
EBP of IAEA/ISSC. 
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