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ABSTRACT: A method is proposed to identify the story stiffness matrix of torsionally 

coupled shear buildings story by story, using the modal parameters extracted from Green’s 

functions. Numerical tests reveal that although the method is valid, robustness to noise is 

low. In particular, the stiffnesses of the top story are greatly underestimated due to non-

cancellation of noise, indicating that noise-reduced modal parameters are of importance for 

identification. An application of the method to an existing building reveals that knowledge 

of the precise masses and moments of inertia of individual floors is required in advance, 

and that velocity recordings and their decomposition into three degrees of freedom using a 

precise location of the center of gravity may reduce noise of the modal parameters. 
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1. INTRODUCTION

The assessment of vulnerability of buildings to a damaging earthquake is a key issue for ensuring their 

safety. For this purpose, it is desirable to non-destructively detect deteriorated or damaged portions and 

assess their extent and degree. An approach of detecting changes in stiffness using vibration recordings 

is one that meets this requirement. The changes are obtained by comparing the stiffnesses identified 

from vibration recordings at the beginning and end of a certain period (for example, before and after a 

damaging earthquake). Hence, the non-destructive detection of the stiffness change eventually reduces 

to the development of a high-precision identification method for the stiffness property using recordings 

of earthquake responses, microtremors, and forced vibrations. 

There have been many studies on development of identification methods for building stiffness, 

broadly classified into four approaches. The first approach is based on the optimization problem which 

minimizes the objective function that represents the squared difference between observables and 

corresponding predictables. As the observables, earthquake responses1), frequency responses2), 3), and 

modal parameters4)–6), specifically the natural frequency, the damping ratio, and the eigenvector (or 

shape function), have been used. 

The second approach is based on the state-space model of building vibrations. Luş et al.7) developed 
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a method for identifying the mass, stiffness, and damping ratio using an identified state-space model. 

They also confirmed the robustness of the method to noise through numerical tests8). Kim and Lynch9) 

applied it to an experimental building to reliably detect change in the stiffness property. 

The third employs vibration equations of individual floors which are derived from the vibration 

equation of a whole building. These individual equations contain only the stiffness and damping ratio 

of the story immediately below individual floors, whereby they are identified story by story without 

being affected by those of the other stories. This approach, however, needs the mass and moment of 

inertia prior to the identification of the stiffness. Nakamura and Yasui10) applied this method to existing 

shear buildings before and after the 1995 Hyogoken Nanbu Earthquake, and detected the reduction of 

stiffnesses using microtremor vibration recordings. Omrani et al.11) extended this approach to torsionally 

coupled shear buildings (TCSBs). Assuming that floors vibrate only horizontally, they derived the 

vibration equations of the individual floors with respect to three degrees of freedom (3DOF) from global 

vibration equation explicitly shown by Ueng et al.12) and verified it with synthetic vibration data of a 

benchmark structure. Subsequently, they13) applied it to experimental data of microtremor vibration and 

free vibration recorded in test structures with intentionally created damages. It revealed that this method 

successfully detects even minor change in stiffness property and is robust to mass uncertainties. 

Nakamiya et al.14) attempted to improve the accuracy of identified stiffnesses, replacing the coefficient 

matrix and the constant vector estimated from experimental data in the story-wise vibration equation 

with those estimated from GFs. 

The final approach is to employ neural networks. González and Zapico15) developed a damage 

identification method based on a conventional neural network, in which the modal parameters are used 

as input data and the mass and stiffness are obtained as output data. Detection methods based on deep 

learning using a convolutional neural network have also been proposed. There are studies on crack 

detection where this approach is applied to image processing16) and on damage detection of simple 

beams using waveform recordings as input data17). 

Recent studies proposed methods that use the vibration equations differently from the 

aforementioned third class. Shintani et al.18) derived simultaneous linear equations to determine all 

stiffnesses and damping coefficients of a whole building simultaneously. However, this way of 

determination may propagate identification errors to the physical parameters of all stories11). Nabeshima 

and Takewaki19) proposed a different method to estimate the stiffness of the story of interest in TCSBs 

using the frequency-domain equilibrium equation above that story. In addition, they conducted 

numerical tests and vibration experiments with a shaking table to examine the accuracy and the 

robustness to noise. This method, however, is still impractical due to two requirements imposed on 

TCSBs: the coincidence of horizontal locations of the centers of the gravity of all floors and the uniaxial 

eccentricity. 

As described above, many story stiffness identification methods have been developed. However, 

most of them deal only with a single degree of freedom for translational motion, despite most low- and 

middle- rise buildings being eccentric buildings that have an offset between the locations of the center 

of gravity and the center of stiffness. A coupling occurs between the translational and rotational motions 

in the vibrations of these buildings. Hence, it is necessary for damage detection and aseismic diagnosis 

of the eccentric buildings to develop a method for identifying the story stiffness matrix with a more 

realistic vibration model. To our knowledge, Omrani et. al.11), cited previously, firstly developed a 

practical tool in identifying the story stiffness matrix of TCSBs. However, this method has a drawback 

that the stiffness matrix varies with input motions, as described in detail in section 2. 

Thus, the first aim of this study is development of an identification method that can be applied to 

TCSBs without this drawback. It is achieved by introduction of the secular equation of the eigenvalue 

problem for vibrations of TCSBs. This equation determines the story stiffness and damping matrices 

only with the modal parameters. Hence, the next issue is estimation of accurate modal parameters from 

vibration recordings. 

Not much work has been done on the identification of story stiffness with the modal parameters. 

Charaverty20) developed an identification method using the two elements of the eigenvector at the 1st 

and top floors and the natural frequencies, utilizing the assumption that the mass and stiffness 

distribution are assigned as their ratios to respective reference values. The advantage of this method is 
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that experiments of vibration measurement are relatively easy, and the disadvantage is that it requires 

knowledge of the distribution of the mass and stiffness, which severely limits applicability in terms of 

buildings covered. Michael et al.21) developed an identification method that assumes only the mass of a 

unit area. The natural frequency and eigenvector are first estimated from microtremor recordings by the 

FDD method22), and then the story stiffnesses are determined, putting the natural frequency and 

eigenvector into the formula derived from the vibration equation of each floor. Instead of using the 

modal parameters for the identification of the story stiffness, Ikeda23) proposed to use them for creation 

of constraints to ensure that the modal parameters observed are consistent with those computed. Adding 

these constraints to the vibration equations of individual floors, reliable story stiffness is determined. As 

mentioned previously, these methods also deal only with a single degree of freedom for translational 

motion and coupled vibrations are out of the scope. 

In order for our new identification method to be a practical and reliable tool, it requires easy 

vibration measurement and accurate estimation of modal parameters. The first requirement is satisfied 

with microtremor measurements and the second requirement is satisfied with the modal parameters 

extracted from Green’s functions (GFs) that are inferred from microtremor recordings by the Wiener 

filter24). GFs inferred by the Wiener filter have an advantageous property of noise reduction25) so the 

modal parameters extracted from them are also expected to be less noisy. Despite such a property, these 

modal parameters have not been used for the identification of story stiffness. The modal parameters of 

an existing TCSB have been already obtained in Horike and Hada26), 27) with the procedure mentioned 

above. A subsequent goal therefore is to apply the proposed identification method to the existing TCSB 

where precise modal parameters are already available. Thus, the second aim of this study is to examine 

practicability of the newly proposed identification method through numerical tests and the application 

to the existing TCSB, using less noisy modal parameters extracted from GFs obtained from microtremor 

recording by the Wiener filter. 

In section 2, we introduce the identification method in detail. In section 3, we perform numerical 

tests to investigate the validity of the method and the robustness to noise. In section 4, we briefly 

recapitulate descriptions of the existing TCSB and the modal parameters obtained in Horike and Hada26), 

27), particularly their reliability. In section 5, we apply the identification method to the building. The 

application to existing buildings is important for discovering issues affecting practical use that cannot 

be obtained from numerical tests and experiments using model buildings. Comparing identified story 

matrices with those used for the structural design, we discuss the causes of the discrepancies between 

them and clarify the issues involved in the identification process. Also, we examine an improvement of 

the method by adjusting the masses and moments of inertia. In section 6, we make several proposals for 

noise reduction of GFs based on the survey of noise sources. Finally, we summarize the findings in this 

study. 

We make substantial reference to the preceding two papers (Horike and Hada26), 27)). For 

convenience, they are hereinafter referred to as the 1st and 2nd papers. 

2. METHOD FOR IDENTIFICATION OF STORY STIFFNESS MATRIX

This section provides a detailed description of an identification method. A global stiffness matrix of an 

n-story TCSB is composed of n matrices with a size of 3 × 311), 12). Assuming that a global damping

matrix is also specified in the same manner as the global stiffness matrix, the equation of vibration for

a whole building is decomposed into the equations of vibration of individual floors11), which include

only the story stiffness and damping matrices immediately below their floors. They are written as

[[𝐾]ℓ[𝐶]ℓ]{𝐷(𝑡)}ℓ =  − ∑ [𝑀]𝑗{�̈�(𝑡)}
𝑗

𝑛
𝑗=ℓ ,  (t=1,2,⋯, 𝑛𝑡)  for (ℓ = 1,2, ⋯ , 𝑛),   (1) 

where [𝐾]ℓ and [𝐶]ℓ denote the story stiffness and damping matrices of the ℓ-th story. Matrix [𝑀]𝑗

is the mass matrix of the j-th floor which is specified as 
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[𝑀]𝑗 = [
𝑚 0 0
0 𝑚 0
0 0 𝐼

]

𝑗

, (𝑗 = 1,2, ⋯ , 𝑛). (2) 

Letters 𝑚  and 𝐼  respectively denote the mass and the moment of inertia. Notation {�̈�(𝑡)}
𝑗

designates the acceleration vector of the 3DOF which is composed of two translational motions and 

torsional motion. Letters t and 𝑛𝑡 are integers of discrete time and their number.

The 3DOF acceleration vector of the j-th floor {�̈�(𝑡)}
𝑗
  is the sum of the 3DOF relative

acceleration vector of the j-th floor {�̈�1(𝑡) �̈�2(𝑡) �̈�3(𝑡)}𝑗
𝑇  and the 3DOF acceleration vector of the

basement { �̈�0 1(𝑡) �̈�0 2(𝑡) �̈�0 3(𝑡)}
𝑇

 , referred to simply as the input vector. Superscript T denotes

transpose. The 3DOF relative acceleration vector is computed by the numerical integration of the 

convolution shown in the following equation 

�̈�𝑖(𝑡) = ∑ ∑ 𝑔𝑖𝑗
𝑛𝑔

𝜏=0
3
𝑗=1 (𝜏) �̈�0 𝑗(𝑡 − 𝜏)  (𝑖 = 1,2,3), (3) 

where 𝑔𝑖𝑗  is GF and subscripts 𝑖  and 𝑗  denote the directions of the input and output motions,

respectively. 

The coefficient vector {𝐷(𝑡)}ℓ is written as

{𝐷(𝑡)}ℓ =  {
{𝑈(𝑡)}ℓ − {𝑈(𝑡)}ℓ−1

{�̇�(𝑡)}
ℓ

− {�̇�(𝑡)}
ℓ−1

}, (4) 

where the velocity vector {�̇�(𝑡)}
ℓ

= {�̇�1(𝑡), �̇�2(𝑡), �̇�3(𝑡)}ℓ
𝑇  and the displacement vector {𝑈(𝑡)}ℓ =

{𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)}ℓ
𝑇  are respectively obtained by numerical integration of the 3DOF relative

acceleration vector once and twice. 

It is obvious from the above descriptions that given the input vector and GFs, Eq. (1) determines 

the story stiffness and damping matrices story by story without propagating identification errors from 

one story to another, which is an advantage of this equation. It, however, has a drawback. Despite the 

story stiffness and damping matrices being constant by nature, those determined by this equation vary 

with the input vector due to dependence of the constant vector {𝐷(𝑡)} on the input vector through the 

velocity vector {�̇�(𝑡)} and the displacement vector {𝑈(𝑡)}. To retain the advantages of Eq. (1) and to 

erase the drawback, we develop an alternative method: the secular equations of the eigenvalue problem 

for individual floors. We derive these equations from Eq. (1) as follows. 

Setting the input vector { �̈�0 1(𝑡) �̈�0 2(𝑡) �̈�0 3(𝑡)}
𝑇

  to zero vector, Eq. (1) reduces to a

homogeneous differential equation. Assuming that a solution of this differential equation of the ℓ-th 

floor is {𝑈(𝑡)}ℓ = { 𝑉𝑠 }
ℓ
𝑒𝜆𝑡 and putting it into the equation, we obtain the secular equation specified

as 

[[𝐾][𝐶]]
ℓ
{ 𝐸𝑠 }

ℓ
=  − 𝜆2 ∑ [𝑀]𝑗

𝑛
𝑗=ℓ𝑠 { 𝑉𝑠 }

𝑗
(𝑠 = 1, 2, ⋯ , 𝑛𝑚)  for (ℓ = 1,2, ⋯ , 𝑛). (5) 

Here, 𝜆𝑠  and { 𝑉𝑠 }
𝑗
 denote the eigenvalue and eigenvector of the 𝑠-th mode. Notation 𝑛𝑚 denotes

a modal number. Vector { 𝐸𝑠 }
ℓ
 consists of the eigenvalue and eigenvector, and is specified as

{ 𝐸𝑠 }
ℓ

= {
{ 𝑉𝑠 }

ℓ
− { 𝑉𝑠 }

ℓ−1

𝜆𝑠 { 𝑉𝑠 }
ℓ

− 𝜆𝑠 { 𝑉𝑠 }
ℓ−1

}. (6) 

We can see that given the eigenvalue and eigenvector, Eqs. (5) and (6) enable us to identify the stiffness 
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and damping story matrices story by story. Also, it is obvious that the input vector does not influence 

the identification at all. 

   It is noted that the secular equation is homogeneous and linear with respect to the eigenvector so 

that it is not determined uniquely, and an arbitrary constant factor times eigenvector also meets this 

equation. More precisely, this multiplicative factor is required only to be invariant from floor to floor. 

The participation vector (hereafter PV) is related to the eigenvector by the equation specified as 

{ 𝑝𝑠 1𝑗 𝑝𝑠 2𝑗 𝑝𝑠 3𝑗 }
ℓ

𝑇
=  𝛽𝑠 𝑗{ 𝑉𝑠 }

ℓ
    (ℓ = 1,2, ⋯ , 𝑛), (7) 

where notation 𝛽𝑠 𝑗 denotes the participation factor which depends on the input motion and the modal

order designated respectively by subscripts j and s, but on neither the floor number designated by 

subscript ℓ nor the output motion (first of the two rear subscripts). Thereby, the PVs also meet Eq. (5). 

We use the eigenvector for the numerical test of the identification method in section 3 and use the PV 

for the practical application in section 5. 

    The right-hand side of Eq. (7) shows that for each mode there are three PVs depending on the three 

input motions designated by subscript j and that they share the same eigenvector. This means that we 

can select a single noise-reduced PV from among the three for each mode. This is an advantage of using 

the PVs. 

3. NUMERICAL TEST

The stiffness matrix of the ℓ-th story is written as 

[𝐾]ℓ =  [

∑ 𝑘𝑥𝑖
0 − ∑ 𝑘𝑥𝑖

𝑦𝑖

0 ∑ 𝑘𝑦𝑖
∑ 𝑘𝑦𝑖

𝑥𝑖

− ∑ 𝑘𝑥𝑖
𝑦𝑖 ∑ 𝑘𝑦𝑖

𝑥𝑖 ∑ 𝑘𝑥𝑖
𝑦𝑖

2 + ∑ 𝑘𝑦𝑖
𝑥𝑖

2

]

ℓ

 =  [

𝑘11 0 −𝑘13

0 𝑘22 𝑘23

−𝑘31 𝑘32 𝑘33

]

ℓ

(8) 

where 𝑘𝑥𝑖
 and 𝑘𝑦𝑖

 are the stiffnesses of lateral load resisting elements such as columns and braces

along the two horizontal axes, and 𝑥𝑖 and 𝑦𝑖 are their locations. Replacing the elements specified by

the polynomials in the middle matrix with parameters of 𝑘𝑖𝑗, the stiffness matrix is simply rewritten as

the rightmost matrix. Our targets for identification are not the stiffnesses of individual resisting elements 

(𝑘𝑥𝑖
 and 𝑘𝑦𝑖

) but the reduced ones (𝑘𝑖𝑗). Looking at the stiffness matrix, we immediately notice two

properties: symmetricity and positive values of the three diagonal elements 𝑘11, 𝑘22, and 𝑘33. These

two properties also hold true for the damping matrix. We will use these two properties for the evaluation 

of the two identified story matrices. 

Numerical tests are conducted to investigate the validity and robustness to noise. A building for the 

tests is an 11-story TCSB and the structural parameters such as the mass, moment of inertia, and the 

elements of the story matrix are given in Table 1. The story damping matrix is a stiffness proportional 

matrix with a proportional constant of 0.02. 

Prior to the numerical tests, eigenvalue and eigenvector preparation is required. They are yielded 

by solving the general eigenvalue problem with the structural parameters in Table 1. The natural 

frequencies and damping ratios derived from the eigenvalues are listed up to the 6th mode in Table 2. 

Also, the absolute values for the three elements of the eigenvectors are shown in Fig. 1. 

Putting these eigenvalues and eigenvectors into Eqs. (5) and (6), we identify the two matrices, 

which reveal that all the stiffnesses shown in Table 1 are reproduced with high precision of up to four 

or more digits, and the damping ratios are also reproduced with the same precision. Furthermore, even 

if the low-order three modes are used, we can get the same degree of precision in reproduction of the 

two matrices. These results of the numerical tests show that the proposed identification method is valid. 
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Table 1 Structural parameters of the building for the numerical tests 

Table 2 Natural frequencies and damping ratios of the building for the numerical tests 

The robustness of the method to noise is examined. For this purpose, we yield eigenvectors 

contaminated with noise. At first, we generate two independent random numbers corresponding to the 

real and imaginary parts of the noise on an assumption of uniform distribution between ±1 , using 

different seed numbers for the two parts. Then, noise level is adjusted by giving the ratio of the square 

root of the sum of squares of the two random numbers to the absolute value of the eigenvector element. 

The noise generated in this way is added to all three elements of the eigenvectors, which yields the 

eigenvectors contaminated with noise. 

The numerical tests are performed for the three noise levels: 1%, 3%, 5%. They reveal that the two 

identified story matrices are not symmetric for every story even in the case of the lowest noise level of 

1%. This means that the inference of noise-reduced GFs is a crucial issue for identification, because the 

eigenvalues and eigenvectors are extracted from GFs. Meanwhile, the diagonal elements of the two 

matrices, namely 𝑘11, 𝑘22, 𝑘33, 𝑐11, 𝑐22, and 𝑐33, take positive values even in the case of the highest

noise level of 5%, indicating that they may be reliable and comparatively robust to noise. For the 

accuracy check of the diagonal elements of the two matrices, we then compare those in the three cases 

of the noise levels to true values of the corresponding diagonal elements in Table 1. Results of these 

comparisons are shown in Fig. 2 as the ratios of the identified values to the true values. 

The upper three diagrams exhibit the ratios of the stiffness, while the lower three exhibit the ratios 

of the damping ratio. We immediately notice that noise influences the identification appreciably. In 

particular, the damping ratio is more sensitive to noise than the stiffness, probably due to its small value. 

Also, we find a conspicuous feature common to the three stiffnesses, 𝑘11, 𝑘22, and 𝑘33 in that the

stiffness at the top story is greatly underestimated. Although this feature is not so conspicuous in the 
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damping ratios, it is visible in them as well. Non-cancellation of noise at the top floor accounts for the 

extreme underestimation. 

Fig. 1 Absolute values of the three elements of the eigenvectors of the building for numerical tests up to 

the 6th mode. The lower horizontal axis is for elements V1 and V2 and the upper is for V3 

Fig. 2 Ratios of identified three diagonal elements to counterparts listed in Table 1 for stiffness matrices 

(top three diagrams) and for damping matrices (bottom three diagrams) 
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As can be seen in the right-hand side of Eq. (5), the eigenvectors contaminated with noise are 

stacked over the floors from the floor of interest (i.e., the ℓ-th floor) to the top floor. However, this 

stacking is impossible at the top floor, with the result that the stiffnesses and the damping ratios produce 

underestimates at this floor. 

The numerical tests reveal that the identification method proposed is valid but is significantly 

sensitive to noise. This indicates that inference of noise-reduced GFs is a key issue for identifying story 

stiffness matrices. 

4. BUILDING AND MODAL PARAMETERS

In this section we describe the building subject to identification of the story stiffness matrices and the 

modal parameters used for the identification. These are already described in detail in the 1st and 2nd 

papers, so here we only recapitulate them briefly. 

This 8-story building is used for offices, and is a frame structure composed of steel reinforced 

concrete columns and steel girders. The structural parameters are listed in Table 3, which shows that this 

building is definitely a torsionally coupled shear building because of the existence of off-diagonal 

elements of the story stiffness matrix (i.e., 𝑘13 and 𝑘23).

Table 3 Structural parameters of the existing TCSB 

Experiments of microtremor measurement were implemented during the period between 0:00 am 

to 5:00 am to avoid the effects of human activities inside the building as well as nearby traffic outside 

the building as much as possible. We additionally measured wind velocities during microtremor 

experiments to investigate their effects on building vibrations, whereby we found that there were no 

effects of the wind on GFs (1st paper). The extraction of the modal parameters from these GFs was 

performed using the genetic algorithm and was fully described in the 2nd paper. 

The GFs were inferred from microtremor recordings which were band-pass-filtered in the 

frequency range between 1 Hz and 10 Hz. Use of a band-pass filter with an adequate frequency range is 

important because it enables the GFs to contain only less-noise modes. The low- and high-frequency 

limits were determined with different criteria. Fourier spectra of torsional motion of the basement 

decrease rapidly below a certain frequency that is mainly controlled by the length of the basement and 

S wave velocity of sediments. Meanwhile, the Fourier spectra of the GFs related to torsional motion 

conversely increase rapidly below this frequency due to the decrease in the spectra of torsional motion 

of the basement28). Hence, the low-frequency limit was determined at the frequency where the spectra 

of the GFs related to torsional motion begin to increase. 

The high-frequency limit was determined in a different way. There are conspicuous peak 

frequencies which appear commonly in the Fourier spectra of multiple GFs. The high-frequency limit 

was determined as the frequency where spectra are sufficiently small and higher than the highest peak 

frequency. We searched for appropriate frequency limits by trial and error with the criteria mentioned 
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above. We finally found that the low-frequency limit of 1 Hz and the high-frequency limit of 10 Hz were 

appropriate. The band-pass filter with this frequency range produced the GFs having the five 

conspicuous peak frequencies as shown in Fig. 14 of the 1st paper. 

The accuracy of the GFs inferred from microtremor recordings in the frequency range between 1 

Hz and 10 Hz was scrutinized for their waveforms in Fig.12 of the 1st paper and for their Fourier spectra. 

As a result, the GFs inferred from microtremor recordings are considered to be appreciably accurate. 

5. APPLICATION TO AN EXISTING TCSB

We apply the identification method to the existing TCSB using the observed modal parameters. The 

extraction of the modal parameters of this building from the GFs is fully described in the 2nd paper. The 

eigenvalues consist of the natural frequencies and damping ratios, the observed values for which are 

listed in Table 4, which is the same as Table 5 in the 2nd paper. As mentioned in section 2, we use the 

PVs instead of the eigenvectors in this section because we have already extracted not the eigenvectors, 

but the PVs. The absolute values of the PVs are also exhibited in Fig. 3. We selected the PVs with less 

noise from the observed PVs exhibited in Fig. 12 of the 2nd paper. 

Table 4 Observed natural frequencies and damping ratios 

Fig. 3 Absolute values of the three elements of the PVs of the existing building up to the 4th mode 
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Putting these eigenvalues and the PVs into Eqs. (5) and (6), we identify the two matrices for all the 

stories. Unfortunately, neither of the matrices are symmetric, and hence the off-diagonal elements (𝑘12,

𝑘13, 𝑐12, 𝑐13) of all the stories are unreliable, judging from the common property of the two matrices,

i.e. symmetricity, as described in section 3. Meanwhile, the diagonal elements of the stiffness matrix

and those of the damping matrices produce different results: those of the damping matrices (𝑐11, 𝑐22,

and 𝑐33) of all the stories are mixed with positive and negative values, but those of the stiffness matrices

(𝑘11, 𝑘22, and 𝑘33) take positive values alone. This suggests that only the diagonal elements of the

stiffness matrices are reliable. Hence, our concern is confined to only the diagonal elements in the

following evaluation.

We then evaluate their accuracy (Fig. 4). They are shown as the ratios of the identified stiffnesses 

to the counterparts in Table 3 with the black bars. The identified stiffnesses of 𝑘11  and 𝑘22  are

obviously underestimated for almost all stories, while the element of 𝑘33 is overestimated except for

the top story. The causes for these discrepancies cannot be other than errors in the structural parameters 

in Table 3 and noise included in the eigenvalues in Table 4 and in the PVs extracted from the GFs in Fig. 

3. The effects of the noise are definitely visible in the two diagonal elements of 𝑘11 and 𝑘33 at the top

story which are greatly underestimated. These underestimations are primarily due to non-cancellation

of the noise included in the PVs, as indicated by the numerical tests.

Fig. 4 Ratios of identified diagonal elements of the stiffness matrix to the stiffnesses used for the 

structural design. Black and gray bars are respectively ratios of stiffnesses identified using 

uncorrected and corrected masses and moments of inertia 

We examine the effects of the errors of the structural parameters on the identification. This is 

important for applying the identification method to existing buildings, because it is implemented on an 

assumption that the masses and moments of inertia are true values. Comparing the natural frequencies 

extracted from the GFs up to the 5th mode, exhibited in the second column of Table 5, with those 

computed using the structural parameters in Table 3, exhibited in the 5th column, they are quite different. 

For example, the observed natural frequency of the 1st mode is 1.64 Hz against 1.71 Hz for the computed 

frequency. This suggests that the mass and moment of inertia should be adjusted prior to the 

identification of the stiffness in use of Eq. (5). Although the natural frequency is in general influenced 

by the mass and moment of inertia as well as by the stiffnesses, we assume in this paper that only the 

mass and moment of inertia are variable when fitting the observed natural frequencies to the computed 

ones; the stiffnesses are fixed for convenience. Although the observed natural frequencies and damping 

ratios are shown in Table 4 up to the 4th mode, only the natural frequency of the 5th mode is judged to 

be sufficiently reliable and is added to Tables 5 and 6. 

We conduct a two-step identification. First, optimum values of the masses and the moments of 

inertia, which minimize the difference between the computed and observed natural frequencies, are 

determined. Then, putting these optimum values into Eq. (5), the stiffnesses are identified. For simplicity 

of the first step, we determine the two magnification factors alone: one is for the masses and the other 

is for the moments of inertia. 
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The natural frequencies observed and computed at the first step are shown in Table 5 for the 

comparison. The natural frequencies observed for the first five modes are exhibited in the 2nd column, 

while those exhibited in the 3rd to 5th columns are obtained with numerical computation for conditions 

that the magnification factor for the moments of inertia changes between 0.8 times and 1.0 times, but 

the masses are fixed to the structural design values. The natural frequencies of the 1st and 5th modes in 

these three columns do not vary at all, despite the change of the moments of inertia. This means that 

these two modes are primarily related to the translational motion which is weakly coupled with the 

torsional motion, and the natural frequencies of the two modes are almost unaffected by the moment of 

inertia. In other words, the masses can be determined, fitting the natural frequencies observed to those 

computed for the two modes alone. 

The observed natural frequencies of these two modes are lower than the calculated ones, indicating 

the need for increment of the masses. This building is used for offices, and the total mass of desks, 

shelves, documents, books, etc. required for office work is quite large. Hence, an increase in the masses 

is appropriate. 

We determine the optimum masses. Varying only the magnification factor of the masses between 

1.0 times and 1.2 times, we obtain the natural frequencies exhibited in the 5th to 9th columns. We select 

the optimal masses which minimize the sum of absolute values of the non-dimensional residual between 

the observed and calculated natural frequency. It is referred to as the residual sum and is defined as 

∑ | 𝑓𝑠 𝑜𝑏𝑠 − 𝑓𝑠 𝑐𝑎𝑙|/ 𝑓𝑠 𝑜𝑏𝑠𝑠 , where 𝑓𝑠 𝑜𝑏𝑠 and 𝑓𝑠 𝑐𝑎𝑙 respectively denote the observed and calculated

natural frequencies of the s-th mode. The residual sum of the natural frequencies of the 1st and 5th 

modes is shown at the bottom of Table 5. It turns out that it is better to increase the masses from 1.1 

times to 1.15 times. 

Table 5 Natural frequencies to determine optimal masses 

We next determine optimal moments of inertia. The natural frequencies computed for the structural 

parameters in Table 3 are exhibited in the 5th column. The natural frequency of the 2nd mode is higher 

than the observed frequency exhibited in the 2nd column, while the natural frequencies of the 3rd and 

4th modes are lower than those observed, indicating that adjustment of the moments of inertia alone 

cannot account for the observed natural frequencies. We therefore adjust both the moments of inertia 

and masses, and pick up their optimum values which minimize the residual sum of the natural 

frequencies for all five modes. 

The natural frequencies are computed for conditions of 1.1 times the masses and a magnification 

factor of the moments of inertia ranging from 0.7 times to 0.9 times. The resulting frequencies are 

exhibited in the 3rd to 5th columns in Table 6. Meanwhile, the natural frequencies, computed for 

conditions of 1.15 times the masses and a magnification factor of the moments of inertia ranging from 

0.6 times to 0.9 times, are exhibited in the 6th to 9th columns. The residual sums in this table show that 
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1.15 times the masses and 0.7 times the moments of inertia are optimum. 

We identify the stiffness matrices with the optimum values of 1.15 times the masses and 0.7 times 

the moments of inertia. The stiffnesses identified reliably are again the diagonal elements of the stiffness 

matrices for the same reasons as the identification implemented with the structural design values of 

masses and moments of inertia. Thus, our concern is again confined to the three diagonal elements of 

the stiffness matrices. 

All three diagonal elements identified are shown in Fig. 4 as gray bars indicating their ratio to the 

stiffnesses used for the structural design. The agreement with the stiffnesses of the structural design is 

improved significantly. In particular, stiffnesses 𝑘22  show a better agreement with those used for

structural design except for the 1st story. This improvement indicates the need to prepare accurate 

masses and moments of inertia in advance of the stiffness identification. 

However, there are still discrepancies in stiffnesses 𝑘11  and 𝑘33 : stiffnesses 𝑘11  are still

underestimated, especially at the top three stories, and stiffnesses 𝑘33 are still overestimated except for

the top story. Also, stiffnesses 𝑘11  and 𝑘33  are greatly underestimated at the top floor, again

indicating that inference of noise-reduced GFs is a key issue. 

Table 6 Natural frequencies to determine optimum masses and moments of inertia 

6. DISCUSSION AND CONCLUSION

We investigated the effects of errors of the structural parameters, especially the mass and moment of 

inertia, and their adjustment resulted in a partial improvement. The search for optimum masses and 

moments of inertia in a more sophisticated way may improve the agreement between the identified 

stiffnesses and the stiffnesses used for the structural design. However, it is not expected that the 

agreement between the two will be achieved only by adjusting the structural parameters, because we 

can definitely recognize the effect of noise contained in PVs on the identification, especially through 

extreme underestimates of stiffnesses 𝑘11 and 𝑘33 at the top story and of stiffness 𝑘11 at the 6th and

7th stories. 

Looking carefully at Fig. 3, we can understand what the noise is. All three elements of the PVs of 

the first three modes are expected to monotonically increase their absolute values toward the upper floor, 

as is seen in Fig. 1. However, this is not always the case at the 6th and higher floors. For example, 

looking at 𝑝12, an element of PV of the 1st mode, the amplitude at the top floor is decreasing rather than

increasing. Also, the amplitudes of 𝑝11  and 𝑝21 , elements of the PV of the 3rd mode, change

irregularly at the 6th floor and above it. We therefore consider that the GFs were not properly estimated 

for these floors. Since the PVs were inferred from the GFs, we consider that the errors included in the 

PVs were propagated from errors in the GFs. If this is the case then, a further question arises: where 

does the noise in the GFs come from? One possible source is an error in the location of the center of 

gravity. 
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GFs are inferred not from microtremor recordings, but from the 3DOF into which microtremor 

recordings are decomposed. The center of gravity is required for this decomposition. Hence, if there is 

an error in the position of the center of gravity, noise contaminates the GFs, and propagates to the modal 

parameters. Thereby, an error in the position of the center of gravity can be considered as a cause of the 

underestimation of the stiffness of the 6th or the stories above it. In addition, the position of the center 

of gravity is necessary for the determination of the moment of inertia. Accurate determination of the 

center of gravity is accordingly important for accurate estimation of GFs and for the identification as 

well. 

Another possible source of noise is the physical quantity (displacement, velocity or acceleration) 

for the microtremor recordings. Since the accuracy of observation equipment has been rapidly 

improving recently, it may not be necessary to consider noise generation due to numerical integration. 

However, acquisition of the appropriate physical quantity contributes to noise reduction. 

It is preferable to acquire microtremor recordings not with acceleration but with velocity for two 

reasons. The first reason is that since the formula decomposing vibration recordings into 3DOF is 

rigorous only for velocity recordings, no error is generated by the decomposition of velocity recordings 

into 3DOF. The second reason is related to the inference of GFs associated with rotations. In the 1st 

paper, it was demonstrated that low-frequency noise appears in these GFs inferred from acceleration 

3DOF, unless the low-frequency contents are removed. However, if we infer GFs associated with 

rotations from velocity 3DOF, low-frequency noise in the GFs is very small, so that the noise in the GFs 

estimated from the velocity 3DOF is smaller than the noise in the GFs estimated from the acceleration 

3DOF. To summarize the above discussion on observations, it is better to acquire velocity recordings 

and estimate GFs from them using accurate centers of gravity. 

Ignoring the effects of rocking motions of the basement also increases the noise in the PVs. We 

assume in this study that all floors including the basement vibrate only horizontally. However, this 

assumption may not be realistic; the noise seems to be larger in the PVs at the higher floors, as is seen 

in Fig 3. Hence, the GFs associated with the translational motions may be contaminated with noise due 

to non-correction of the effects of the rocking motions of the basement. The PVs extracted from these 

GFs may be also contaminated with noise accordingly. 

So far, we have discussed the improvements in the modal parameter estimation procedure used in 

the 1st and 2nd papers. There are, however, different methods to estimate the modal parameters from 

stationary vibration recordings such as microtremors. In particular, the random decrement method, 

abbreviated as RD method, may be preferable in that it does not require the input motions, as opposed 

to our method using the Wiener filter that requires the input motions. Ueng et al.12) extended the RD 

method to be applicable to TCSBs. Consequently, modal parameters estimated by this extended RD 

method may improve the accuracy of identified story stiffnesses. 

We have developed an identification method for the story stiffness matrices of torsionally coupled 

shear buildings using the modal parameters. This method has advantages: the story stiffness matrices 

are identified story by story without propagating identification errors from one story to another as well 

as without the effects of input motions. To make use of these advantages, the precise masses and 

moments of inertia of individual floors and the noise-reduced modal parameters are required in advance 

of application of the method. The noise-reduced modal parameters are extracted from GFs that are 

obtained from velocity microtremor recordings using the precise location of the center of gravity. 

Furthermore, the effects of the rocking motions of the basement may be required in considering the 

inference of the GFs related to translational motions. These improvements lead to identification in which 

not only diagonal elements, but also off-diagonal elements, are obtained accurately. 
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