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ABSTRACT: This article derives a time-varying function of the momentary energy input 
to a linear elastic single-degree-of-freedom system with viscous and complex damping. 
The problem is formulated in the form of a Fourier series using the Fourier amplitude and 
the difference of Fourier phase angles. The numerical analysis results show that (1) the 
time-varying function formulated using the Fourier series corresponds to the envelope of 
ground acceleration, and (2) the maximum momentary input energy evaluated using the 
formulation in this paper agrees well with that obtained from time-history analysis.  
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1. INTRODUCTION

In the seismic design of building structures, the most important response parameter is the peak 
displacement. Another important parameter is the cumulative energy absorbed by the structure. The total 
input energy1), 2) is the seismic intensity parameter related to the cumulative energy. Moreover, the 
maximum momentary input energy3)–5) is the intensity parameter related to the peak displacement. 

The total input energy is the energy input to a structure from the beginning to the end of the 
earthquake excitation. Kuwamura et al.6) and Ordaz7) have shown that the total input energy per unit 
mass can be calculated from a Fourier amplitude spectrum without the phase characteristics of ground 
acceleration. Additionally, the momentary input energy strongly depends on the energy input per unit 
time. Ohsaki revealed that the waveform of the ground acceleration is strongly correlated with the 
distribution of its phase difference8), so the time history of the momentary energy input should be related 
to the phase characteristics of ground acceleration. Kuwamura9) and Takahashi and Akiyama10) 
demonstrated that the time history of the cumulative energy input is similar to that of the cumulative 
square of the acceleration. However, the relation between the phase characteristics of ground motion 
and its cumulative square remains unknown. 
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The authors have investigated the relation between the total input energy1), IE , and the maximum 
momentary input energy3), 4), maxEΔ , from the viewpoint of the duration of ground acceleration11). In a 
previous study11), the equivalent duration of ground acceleration was defined from the distribution of 
the group delay time12). The relation between IE  and maxEΔ  was then formulated as a function of the 
equivalent duration. However, the definition of equivalent duration in this previous study was not 
supported by a theoretical background. Therefore, there is still room for further discussion on this point. 

The authors have also developed a method that predicts the peak response of pre-1981-designed 
existing reinforced concrete (RC) and steel reinforced concrete (SRC) structures with brittle members. 
During a series of analytical13)–15) and experimental16), 17) studies, it was found that the peak displacement 
of existing concrete structures with brittle members depends strongly on the time history of ground 
acceleration, even though its response spectrum is the same13). 

It is important to note that the time-history of the acceleration is not uniquely determined from the 
Fourier amplitude and Fourier phase difference. Kimura has shown that a new ground acceleration can 
be generated artificially from the original acceleration by shifting the Fourier phase angle18): the 
waveform of the generated acceleration is similar to that of the original acceleration, but its time-history 
is locally different. Analytical studies have investigated the nonlinear response of a seven-story SRC 
existing building14), 15) using groups of ground accelerations; in these analyses, the same target response 
spectrum and Fourier phase difference were used to generate the ground accelerations. The only 
difference in the group of generated ground accelerations was the value of the shifted phase angle. The 
results show that nonnegligible scattering of the peak displacement occurs, even though the response 
spectrum and Fourier phase difference of the input ground motions are identical14). In addition, the peak 
response of structures with brittle members strongly depends on whether significant strength 
degradation occurs prior to the maximum momentary energy input15). Note that scattering of the 
nonlinear peak response due to local differences in the input ground motion is observed in the response 
of an SRC building without brittle members19). 

As discussed in previous studies13), 15), premature brittle failure prior to the maximum momentary 
energy input strongly depends on the cumulative energy input until the maximum momentary energy 
input. Therefore, for better predictions of the peak displacement of a building with brittle members, 
accurate predictions of (i) the maximum momentary input energy and (ii) the cumulative input energy 
until the maximum momentary energy input are essential. As stated above, the time-history of the 
acceleration is not uniquely determined from the Fourier amplitude and Fourier phase difference. The 
authors consider the scattering of the nonlinear response caused by local differences in ground 
acceleration to be unavoidable “fluctuations.” Therefore, the influence of such unavoidable fluctuations 
should be eliminated from the prediction method for both (i) and (ii). 

In this article, a time-varying function of the momentary energy input to a linear elastic single-
degree-of-freedom (SDOF) system is formulated. Section 2 derives the time-varying function of ground 
acceleration in the form of a Fourier series. Section 3 describes the formulation of a time-varying 
function of the momentary energy input to a linear elastic SDOF system with viscous and complex 
damping. Section 4 presents numerical examples and validates the proposed time-varying function, 
before verifying the accuracy of the predicted maximum momentary input energy based on the proposed 
time-varying function. 

2. TIME-VARYING FUNCTION OF GROUND ACCELERATION

2.1 Definition of the time-varying function and envelope function of ground acceleration 

A discrete time history of ground motions ( )ga t , defined within the range [ ]0, dt , can be expressed as 
follows using a Fourier series: 
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In Eqs. (1)–(3), nc  and nω  are the complex Fourier coefficients of the ground motion and the 

circular frequency of the nth harmonic, and i  is the imaginary unit. Additionally, it is assumed that 0c  
is equal to zero. In Eq. (3), the overbar indicates the complex conjugate. Let nA  and nφ  be the Fourier 
amplitude and phase angle of the nth harmonic. The relation between nA , nφ , nc , and nc  is 
 

 ( ) ( ) ( ) ( )2, 2 exp , 2 expn n n n n n n n n nc c A c A i c c A iφ φ− −= = = − = = . (4) 
 
Following a study by Kimura18), the ground motion ( )*

ga t  can be defined from Eq. (1) by shifting the 
phase angle of all harmonics by 2π , i.e., 
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Note that the ground acceleration given by Eq. (5) corresponds to the Hilbert transform of the original 
ground acceleration in Eq. (1). The time-varying function and the envelope function of the ground 
acceleration,  ( )ga t  and ( )tα , respectively, are defined as 
 

  ( ) ( ){ } ( ){ }22 * 2g g ga t a t a t = +   , (7) 

 ( )  ( ) ( ){ } ( ){ }22 *2 g g gt a t a t a tα = = + . (8) 

 
Figure 1 compares the ground acceleration motions ( )ga t , ( )*

ga t  and the envelope function 

( )tα . The ground acceleration used herein is the horizontal major component of the Osaka Gas Fukiai 
record from the 1995 Hyogo-ken Nanbu Earthquake. As shown here, although the time-history of the 
original record ( )ga t  and its Hilbert transform ( )*

ga t  are different, the waveforms of these two 
accelerations are similar. In addition, the function ( )tα  envelops both ( )ga t  and ( )*

ga t . 
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Fig. 1 Comparison of ag(t), ag

*(t) and envelope function α(t)  
 
2.2 Formulation of the time-varying function using Fourier series 
 
Substituting Eqs. (1) and (5) into Eq. (7), the time-varying function  ( )ga t  can be rewritten as 
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Equation (9) can be rewritten in the form  
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From Eq. (10), the square of the time-varying function of ground acceleration can be expressed in the 
form of a Fourier series as  
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Equations (11) and (12) are derived in Appendix A. The envelope function ( )tα  can be calculated 
from 
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2.3 Characteristics of the time-varying function 
 
The average of Eq. (11) in the range [ ]0, dt  can be expressed as 
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In addition, the square mean value of Eqs. (1) and (5) can be expressed as 
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Therefore, the square mean value of the time-varying function  ( )ga t  is equal to that of the original 

ground acceleration and its Hilbert transform. In other words, the cumulative power of  ( )ga t  is equal 
to that of the original acceleration ( )ga t . 

Next, the coefficient *
2 ,G nA  is rewritten using the Fourier amplitude and the phase angle. In the 

case of 1 ≤ n ≤ N − 1, the coefficient *
2 ,G nA  can be rewritten as 
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The nth phase difference, nφΔ , is defined as 
 

 1n n nφ φ φ+Δ = − . (17) 
 
The difference between the phase angles in Eq. (16) can be rewritten as 
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By substituting Eq. (18) into Eq. (16), the coefficient *

2 ,G nA  can be rewritten as 
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As the coefficient *

2 ,G nA −  is the complex conjugate of *
2 ,G nA , *

2 ,G nA −  can be expressed as 
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Equations (19) and (20) indicate that the coefficients *

2 ,G nA , *
2 ,G nA −  are functions of the kth Fourier 

amplitude kA  and the kth phase difference kφΔ . Therefore, the time-varying function of the ground 
acceleration phase-shifted by the constant 0φΔ , ( )0 ,ga tφΔ , is identical to that of the original ground 
acceleration: 
 

 ( ) ( ){ }0 0, exp sgn
N

g n n n
n N

a t c i tφ ω ω φ
=−

 Δ = − Δ    (21) 

 
  

- 32 -



 

 

3. TIME-VARYING FUNCTION OF MOMENTARY INPUT ENERGY 
 
3.1 Linear SDOF system with viscous and complex damping 
 
In general, a linear SDOF system with either viscous or complex damping is considered. This study 
examines a linear SDOF system with viscous and complex damping, because this enables the cumulative 
viscous damping energy and hysteresis energy of the nonlinear system to be evaluated separately. 

Considering the steady response of the linear SDOF system with viscous and complex damping 
under harmonic excitation (circular frequency of excitation: nω ), the equation of motion is 
 

 ( ){ } ( )2
0 02 1 2 sgn expn ny h y i y i tω β ω ω ω+ + + =  . (22) 

 
where h  and β  are the viscous and complex damping ratios, respectively; nω  is the natural circular 
frequency of the linear SDOF system. The response displacement and velocity of the system are 
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In Eqs. (23) and (24), ( )CVD nH iω  and ( )CVV nH iω  are the displacement and velocity transfer 
functions, respectively. Next, we formulate the steady response of the linear SDOF system subjected to 
the ground acceleration ( )ga t  defined in Eq. (1). The equation of motion, and the displacement and 
velocity responses, are expressed as 
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Similarly, the equation of motion and the displacement and velocity responses of the linear SDOF 

system subjected to ground acceleration ( )*
ga t  defined in Eq. (5) are expressed as 
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3.2 Time-varying function of displacement and velocity responses 
 
The time-varying functions of the displacement and velocity responses, ( )y t  and ( )y t , respectively, 
are defined as 
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These can be expressed in the form of Fourier series as 
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The square mean value of the time-varying function of the displacement response is 
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Similarly, the square mean value of the time-varying function of the velocity response is 
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Following the work of Sagami et al.20), the response period, T ′ , is defined as 
 

 ( ){ } ( ){ }2 2
* *
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3.3 Time-varying function of energy ratio 
 
The rate at which energy is supplied to the SDOF system by ground acceleration ( )ga t  is defined as 
 

 ( ) ( ) ( ) ( )I I ge t E t m a t y t= = −  , (40) 

- 34 -



 

 

 where ( ) ( ) ( )
0

t

I gE t m a t y t dt= −  . (41) 

 
In Eq. (41), ( )IE t m  is the cumulative energy input per unit mass in the range [ ]0, t , and m  is 

the mass of the SDOF system. Ohi et al.21) proposed energy rate spectra for linear SDOF systems with 
viscous damping. The energy rate defined by Eq. (40) is identical to these energy rate spectra. Thus, 

( )Ie t  is denoted as the energy ratio for simplicity. Substituting Eqs. (1) and (27) into Eq. (40), ( )Ie t  
can be rewritten as 
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Similarly, the rate at which energy is supplied to the SDOF system by ground acceleration ( )*

ga t  
is expressed as 
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The time-varying function of the energy ratio,  ( )Ie t , is defined as 

 

  ( ) ( ) ( ){ }* 2I I Ie t e t e t= + .  (44) 
 
Substituting Eqs. (42) and (43) into Eq. (44),  ( )Ie t  can be written as the Fourier series  
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Equations (45) and (46) are derived in Appendix B. The integral of Eq. (45) from [ ]0, dt  is 
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Equation (47) is identical to the total input energy per unit mass derived by Ordaz et al.7). Therefore, 

the time-varying function of the cumulative energy input per unit mass  ( )IE t m  is defined as 
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In the following discussion, the time-varying function  ( )IE t m  is considered as an approximation 
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of the cumulative energy input per unit mass in the range [ ]0, t . 
 
3.4 Time-varying function of momentary input energy 
 
Following Inoue and his coauthors3), 4), the momentary input energy per unit mass is defined as 
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t t

g
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+Δ

Δ = −   . (49) 

In Eq. (49), tΔ  is the duration of a half-cycle of the structural response. Equation (49) can then 
be rewritten using Eq. (48). Using Eq. (45), the average of the momentary input energy ratio per unit 
mass, ( )( )1 t E mΔ Δ , is approximated as 
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Note that in Eq. (50), the range of integration changes from [ ],t t t+ Δ  to [ ]2 , 2t t t t− Δ + Δ . This 

is because the average of the momentary input energy ratio at time t  is defined as the average of Ie  
in the range [ ]2 , 2t t t t− Δ + Δ . The calculation of Eq. (50) assumes that tΔ  can be approximated as 
half of the response period T ′  defined in Eq. (39). By calculating the integral in Eq. (50), the time-
varying function of the momentary input energy per unit mass can be rewritten as 
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The time-varying momentary input energy can be calculated from the Fourier amplitude and phase 

difference of the ground acceleration, and the properties of the linear SDOF system. Thus, it remains 
unchanged if the phase angle in all harmonics of the ground acceleration is shifted by a constant. 
 
 
4. NUMERICAL EXAMPLES 
 
4.1 Ground motion data 
 
This study uses the horizontal major component of the Osaka Gas Fukiai record (FKI) from the 1995 
Hyogo-ken Nanbu Earthquake and the horizontal major component from Sendai Government Office 
building #2 (SND) recorded during the 2011 earthquake that affected the Pacific coast of Tohoku22). 
Twelve semi-artificial ground accelerations are generated for each record by shifting the phase angle 
according to Eq. (21). In this article, the constant phase angle shift for all harmonics, 0φΔ , ranges from 
0–11 12π  in steps of 12π ; the FKI and SND data are generated for each record. The time interval of 
each ground acceleration is 0.01 s. The data length of each record, after adding 0’s for fast Fourier 
transform (FFT) analysis, is 81.92 s for FKI and 327.68 s for SND. 
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4.2 Envelope function of ground acceleration 
 
First, the envelope function of ground acceleration ( )tα  is calculated and compared to the ground 
acceleration ( )0,ga tφΔ . Figure 2(a) compares ( )0,ga tφΔ  and ( )tα  for FKI, and Fig. 2(b) shows the 

time-history of the ratio ( ) ( )0 ,ga t tφ αΔ . For SND, ( )0 ,ga tφΔ  and ( )tα , and the time-history of 

the ratio ( ) ( )0 ,ga t tφ αΔ , are shown in Fig. 3. 

 

 
Fig. 2 Validation of the envelope function of ground acceleration (FKI) 

 

 
Fig. 3 Validation of the envelope function of ground acceleration (SND) 

 
Figure 2(a) confirms that the whole FKI waveform is unaffected by shifting the phase angle. In 

addition, the ratio ( ) ( )0 ,ga t tφ αΔ  varies within the range [ ]1,1− , except in limited cases, as shown 

in Fig. 2(b). Note that the point at which the absolute value of ( ) ( )0 ,ga t tφ αΔ  exceeds 1 is in the 
range where the envelope function is very small (t > 24 s); this is actually a numerical artifact. Similar 
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observations can be made for the SND group. In Fig. 3(b), the absolute value of ( ) ( )0 ,ga t tφ αΔ  
becomes drastically smaller when t > 300 s, corresponding to the part where 0’s were added for the FFT. 

From Figs. 2(b) and 3(b), the maximum of ( ) ( )0 ,ga t tφ αΔ  is close to 1.0, except for (i) the first 
5 s and (ii) the part where 0’s were added for FFT analysis. Therefore, the envelope function shown in 
Eq. (13) fits well to the acceleration ( )0 ,ga tφΔ . 

Next, discussion focuses on the difference between the time-histories of ground acceleration after 
shifting the phase angle. Figure 4 shows the time-history of each ground motion group over a 2-s period. 
The time-histories differ locally according to the value of 0φΔ . In addition, all ground accelerations are 
enveloped by ( )tα . 

 

 
Fig. 4 Difference in the time-history of acceleration caused by phase shift 

 
4.3 Validation of the time-varying function of energy input to a linear SDOF model 
 
4.3.1 Model parameters 
The following subsections analyze the time-history of the linear SDOF model using the shifted ground 
acceleration ( )0 ,ga tφΔ . Previous studies13)–17) have shown that the following two points are important 
in obtaining better predictions of the nonlinear response of the structure: (i) the maximum momentary 
input energy and (ii) the cumulative input energy until the maximum momentary energy input. Therefore, 
it should be possible to validate the time-varying functions given by Eqs. (48) and (51). 

The mass of the SDOF system m  is assumed to be 1.0 t. The natural period of the SDOF model 
T  is set to be either 1.0 s or 4.0 s to simulate the response of traditional earthquake-resistant building 
structures and base-isolated structures, respectively. The viscous damping ratio h  is set to 0.10 
following a study by Akiyama1), 2), and the complex damping ratio β  is set to 0. The Newmark-Beta 
method is applied for the numerical integration. The time interval for integration is set to 0.005 s. The 
number of time-history analyses is 2 × 2 × 12 = 48 cases. 
 
4.3.2 Cumulative energy input per unit mass 
Figures 5–8 compare the time-histories of the cumulative energy input obtained from time-history 
analysis and the time-varying function in Eq. (48). From Fig. 5(a), the time-varying function 
consistently agrees with the time-history analysis results for the FKI group and T  = 1.0 s. In addition, 
Eq. (48) tends to give the median value of the twelve time-history analysis results, as shown in Fig. 
5(b). Similar observations can be found for the SND group and T  = 1.0 s (Fig. 6), as well as for T  
= 4.0 s (Figs. 7, 8). Therefore, the time-history of the cumulative energy input per unit mass can be 
approximated by Eq. (48). A comparison of Figs. 5 and 7 suggests that the difference in time-histories 
caused by the phase shift is more significant for T  = 4.0 s (Fig. 7) than for T  = 1.0 s (Fig. 5). 
However, as shown in Fig. 7(a), the difference caused by the phase shift is limited. 
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Fig. 5 Time-histories of cumulative energy input (FKI, T = 1.0 s) 

 

 
Fig. 6 Time-histories of cumulative energy input (SND, T = 1.0 s) 

 

 
Fig. 7 Time-histories of cumulative energy input (FKI, T = 4.0 s) 

 

 
Fig. 8 Time-histories of cumulative energy input (SND, T = 4.0 s) 

 
4.3.3 Momentary energy input per unit mass 
Next, the time-varying function of the momentary input energy (Eq. (51)) is validated. Figure 9 shows 
the averaged time-history of the momentary input energy. For T  = 1.0 s, the time-history of the 
momentary input energy ratio per unit mass, ( )( )1 t E mΔ Δ , is smoothed by considering the averaged 
time-history analysis results, as shown in Fig. 9(a). In contrast, the averaged time-history analysis results 
are not smooth for T  = 4.0 s, as shown in Fig. 9(b). 
 

- 39 -



 

 

 
Fig. 9 Averaging of time-histories of momentary energy input 

 
Figure 10 compares the averaged time-history analysis (shown in Fig. 9) and the time-varying 

function of the momentary input energy (Eq. (51)). The time-varying function agrees well for T  = 
1.0 s, but for T  = 4.0 s, there are conspicuous differences. In particular, the variation in shorter periods 
of the time-varying function is noticeable in the SND group, as shown in Fig. 10(b). Comparisons of the 
coefficients in Eq. (51) are presented in Appendix C. 
 

 
Fig. 10 Comparison of the time-histories of the momentary energy input 

 
To understand why the compatibility of the time-varying function depends on the natural period of 

the system, Fig. 11 compares the assumed duration of a half-cycle of the structural response tΔ  using 
Eq. (51) with that obtained from the time-history analysis. Here, 2t T ′Δ =  is assumed from the 
response period defined in Eq. (39), which is used to calculate Eq. (51), while the value obtained from 
time-history analysis is taken as the half-cycle of the maximum momentary energy input.  
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Fig. 11 Comparison of the duration of a half-cycle of the structural response 

 
As shown in Fig. 11(a), 2t T ′Δ =  approximates the averaged time-history analysis results for T  

= 1.0 s, especially for FKI, where the variation in the time-history analysis results is very small. In 
contrast, for T  = 4.0 s, the difference between 2t T ′Δ =  and the averaged time-history analysis 
results is noticeable, as shown in Fig. 11(b). The variation in the time-history analysis results is larger 
for the FKI group. One reason why the results from Eq. (51) differ noticeably from the time-history 
analysis results for T  = 4.0 s is that the value of tΔ  used in Eq. (51) is appreciably different from 
the time-history analysis results. 

As stated earlier, one of the target engineering parameters is the maximum momentary input energy 
per unit mass, maxE mΔ . This can be calculated as the maximum value of ( )E t mΔ  defined in Eq. 

(49). Here, ( )E t mΔ  is estimated as  
 

 ( )  ( ) ( )
2 2 1

*

12 2

1 exp
t t t t N

n n
n Nt t t t

E t E t
dt E i t dt

m t m
ω

+Δ +Δ −

Δ
=− +−Δ −Δ

Δ Δ
≈ =

Δ   . (53) 

 
The maximum momentary input energy per unit mass, maxE mΔ , is evaluated as the maximum 

value of ( )E t mΔ  (Eq. (53)) in the range [ ]0, dt . For convenience, the equivalent velocity of the 
maximum momentary input energy is defined as 

 
 max2EV E mΔ = Δ . (54) 
 

Figure 12 compares the equivalent velocity EVΔ  predicted from the time-varying function and the 
time-history analysis results. As shown in Fig. 12(a), the predicted EVΔ  agrees well with the time-
history analysis results for T  = 1.0 s. In addition, the predicted EVΔ  slightly overestimates the time-
history analysis results for T  = 4.0 s in the case of the FKI group, whereas the predicted EVΔ  is close 
to the time-history analysis results for the SND group. 

The overestimation for T  = 4.0 s with the FKI data occurs because, as shown in Fig. 10(a), the 
value calculated from Eq. (51) is larger than the averaged time-history from t = 8–10 s, when the peak 
of the time-varying function occurs. In contrast, with the SND data, the variation in the shorter period 
of the time-varying function is cancelled by the integration in Eq. (53) for T  = 4.0 s. This is why the 
predicted EVΔ  is close to the time-history analysis results in this case.  

As discussed in previous studies1)–5), 11), the total input energy IE  and the maximum momentary 
input energy maxEΔ  to the nonlinear SDOF system can be predicted using the effective period, which 
considers the elongation of the natural period as a result of nonlinearities. Considering (i) the accuracy 
of the effective period and (ii) the unavoidable scattering of the nonlinear peak response caused by local 
differences in the ground acceleration, the accuracy of the predicted EVΔ  is acceptable for this purpose. 
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Fig. 12 Accuracy of the predicted equivalent velocity of the maximum momentary input energy 

 
 
5. CONCLUSIONS 
 
In this article, a time-varying function of the momentary energy input to a linear SDOF system has been 
formulated. The main conclusions and results of this article are as follows. 
 
1. The time-varying function of the ground acceleration is similar to the envelope of ground 

acceleration. In addition, the time-varying function can be calculated from the Fourier amplitude 
and the phase difference of all harmonics. Therefore, it remains unchanged if the phase angle in all 
harmonics of the ground acceleration is shifted by a constant. 

2. The time-varying functions of the displacement and velocity responses, as well as the cumulative 
and momentary energy inputs of the linear SDOF system, are formulated in the form of Fourier 
series. They can be calculated from the properties of the linear SDOF system and the Fourier 
amplitude and phase difference of all harmonics. Those functions are independent of the 
unavoidable “fluctuations” caused by local differences in the ground acceleration. 

3. The time-varying function of the cumulative energy input of the linear SDOF system agrees well 
with the time-history analysis results. Therefore, the time-varying function of the cumulative 
energy input formulated in this article provides a good approximation for evaluating the time-
history of the cumulative energy input. 

4. The time-varying function of the momentary energy input of the linear SDOF system agrees well 
with the time-history analysis results. The predicted equivalent velocity of the maximum 
momentary input energy agrees well with the time-history analysis results. 
 

From conclusions 3 and 4, the peak displacement and the cumulative energy of the nonlinear 
structure can be predicted by using the time-varying functions formulated in this article. The next phase 
of this study should consider: (a) predictions of the momentary input energy spectrum for linear and 
nonlinear SDOF systems, and (b) predictions of the cumulative viscous damping energy and hysteresis 
energy of nonlinear structures using viscous and complex damping.  
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APPENDIX A: DERIVATION OF TIME-VARYING FUNCTION OF GROUND 
ACCELERATION 
 
The derivation of Eqs. (11) and (12) from Eq. (10) is shown below. To expand Eq. (10), the parameter 
n is replaced by 1n  and 2n  as 

 

 ( ){ } ( ) ( )1 1 2 2
1 2

2

1 1

ˆ 2 exp exp
N N

g n n n n
n n

a t c i t c i tω ω−
= =

    = −  
    
  . (A1) 

 

Expanding Eq. (A1) and considering that 
1 2 1 2n n n nω ω ω− = − , ( ){ }2ˆga t  can be expressed as 

 

 ( ){ } ( ) ( )
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1 1 1 2 1 2 1 2 2 1
1 1 2 1 2 1

1 12
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By setting 3 1 2n n n= − , the second term of Eq. (A2) can be rewritten as 
 

 ( ) ( )
1 1

1 2 1 2 1 3 1 3
1 2 1 3
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2 1 2 1
2 exp 2 exp
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     =   
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Considering Fig. A1(a) and changing the order of summation, Eq. (A4) can be rewritten as 
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Fig. A1 Calculation of summation in Eqs. (A3) and (A5) 

 
Similarly, by setting 3 2 1n n n= − , the third term of Eq. (A2) can be rewritten as 
 

 ( ) ( ) ( )
1

1 2 2 1 1 31 3
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2 exp 2 exp
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Considering Fig. A1(b) and changing the order of summation, Eq. (A5) can be rewritten as 
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Substituting 1 2 3n n n= −  into Eq. (A6) gives 
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Therefore, Eq. (2) can be rewritten as 
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Equation (A8) is the expression of the square of the time-varying function of ground acceleration in the 
form of a Fourier series. By defining each coefficient as in Eq. (12), Eq. (A8) can be written as Eq. 
(11).  
 
 
APPENDIX B: DERIVATION OF TIME-VARYING FUNCTION OF ENERGY RATE 
 
The derivation of Eq. (45) is shown below. By substituting Eqs. (42) and (43) into Eq. (44) and 
replacing the parameter n by 1n  and 2n , ( )ˆIe t  can be expressed as 
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The first term of Eq. (A9) can be expanded as 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 2 2 2
1 2

1

1 1 1 2 1 2 1 2
1 1 2

2 1 2 2 1
1 2 1

1 1

1

1 2 1

1

1 1

exp exp

exp

exp

N N

n n CVV n n n
n n

nN N

CVV n n n CVV n n n n n
n n n

N N

CVV n n n n n
n n n

c i t H i c i t

H i c c H i c c i t

H i c c i t

ω ω ω

ω ω ω

ω ω

−
= =

−

− − −
= = =

−

− −
= = +

    − −  
    

  = − + − 
  

  + − − 
  

 

  

 

. (A10) 

 
Similarly, the second term of Eq. (A9) can be expanded as 
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Therefore, Eq. (A9) can be rewritten as 
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The second and third terms of Eq. (A12) can be rewritten using a similar method as in Appendix A. 

Therefore, ( )ˆIe t  can be expressed in the form of a Fourier series as 
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By defining each coefficient as in Eq. (46), Eq. (A13) can be written as Eq. (45).  

 
 
APPENDIX C: COMPARISON OF FOURIER COEFFICIENTS OF TIME-VARYING 
FUNCTION OF MOMENTARY INPUT ENERGY 
 

Figures A2 and A3 show the normalized Fourier coefficient of the time-varying function of 
momentary input energy, * *

, ,0nE EΔ Δ , as a function of the nth frequency ( )2n nf ω π= . Here, 

( )2 1T t′ = Δ  is the reciprocal of the assumed duration of a half-cycle of the structural response. As 

shown in these figures, the normalized coefficient * *
, ,0nE EΔ Δ  decreases rapidly as the frequency 

nf  increases from 0. In addition, * *
, ,0nE EΔ Δ  becomes very small around 2 ,4nf T T′ ′= . 

For T = 1.0 s, * *
, ,0nE EΔ Δ  is less than 0.10 in the range 2 4nT f T′ ′< < , and * *

, ,0nE EΔ Δ  is 

less than 0.01 in the range 4 6nT f T′ ′< < , as shown in Fig. A2. For T = 4.0 s (Fig. A3), * *
, ,0nE EΔ Δ  

is greater than for T = 1.0 s, and * *
, ,0nE EΔ Δ  is greater than 0.01 in the range 4 6nT f T′ ′< < . This 

implies that the contribution of the component of 2nf T ′>  in the time-varying function is greater for 
T = 4.0 s than for T = 1.0 s. In other words, the contribution of the components in periods shorter than 
the natural period in Eq. (51) is more significant in the case of T = 4.0 s. 

In conclusion, the predominant contribution of the shorter-period components in Eq. (51) may be 
the primary factor in the difference between the time-history analysis results and the time-varying 
function shown in Fig. 10. Therefore, the compatibility of the time-varying function and the time-history 
analysis results may depend on the relation between the natural period of the system and the predominant 
period of the ground acceleration. 
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Fig. A2 Normalized Fourier coefficient of time-varying function of momentary input energy  

(T = 1.0 s)  
 

 
Fig. A3 Normalized Fourier coefficient of time-varying function of momentary input energy  

(T = 4.0 s)  
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