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ABSTRACT: In order to support disaster response activities, we developed an automatic 
damage classification model using aerial photographs obtained from several earthquakes in 
Japan. First, we visually classified all buildings into one of four damage levels, then constructed 
a training and test data set covering four damage levels. By using this training data set, we were 
able to develop a CNN-based damage detection model with higher performance than previous 
models. As a result, an average recall value of 70% was obtained, and we confirmed that it is 
sufficiently accurate to assess the state of disaster damage to wooden buildings in Japan. 
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1. INTRODUCTION

Gaining a rapid understanding of the state of damage immediately following the onset of a disaster is of 
paramount importance so that various public organizations can make decisions concerning how they 
should respond. As a result, real-time estimation systems based on space interpolation of earthquake 
observation records1)–3) have been developed to help understand the state of seismic motion damage to 
various structures just after the onset of a disaster. Although these systems are effective in providing 
information for determining the degree of damage in the initial stages of a disaster response, the estimated 
damage is sometimes inconsistent with the actual damage observed because of the influence of localized 
amplifications of seismic motions, space resolutions for the ground, buildings and other data used for the 
estimation, uncertainty with the estimation model’s damage function, and other factors. It is, therefore, 
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necessary to compile damage information verified by surveys, inspections and patrols, etc., over time4) 
when responding to a disaster from the initial first-aid stages through to the restoration period. However, 
because a longer time is needed to clarify the true extent of damage by means of field surveys as the scale 
of damage increases, it is appropriate that remote sensing involving the use of artificial satellites, aircraft, 
and other means be used in a mutually supplementary manner5). 

One remote sensing technique that can be adopted to make observations is the use of fixed-wing 
aircraft. The use of fixed-wing aircraft makes it possible to take images at flight altitudes of about 1 to 2 
km under daytime conditions, even with relatively small amounts of cloud cover, thus producing higher 
resolution images than are possible with an artificial satellite6). Aircraft are also superior to helicopters 
and unmanned aerial vehicles (UAVs) because an extensive survey can be carried out in a single flight. 
Furthermore, the overall time taken, from take-off through to imaging, data transfer, orthographic 
processing and other steps in the preparation of readable images usually only takes a few days, although 
this depends on when the disaster occurs, weather, and other conditions7). For these reasons, aerial 
photography is better in terms of resolution, coverage and speed, and can be said to be an effective remote 
sensing tool for determining the state of damage. 

When determining the amount of building damage due to an earthquake, for example, the Guideline 
for Operating the Assessment Criteria for Disaster Damage to Dwelling Houses produced by the Cabinet 
Office (announced in March 2020)8) states that “a dwelling house can be judged to be completely 
destroyed if its collapse is confirmed by reading an aerial photograph”; aerial photography is expected to 
be further utilized in support for disaster responses in the future. Previous studies have shown that the 
normal resolution aerial photographs allow effective visual estimation of building damage, and that such 
damage can be classified into up to four levels, approximately, when using vertical images taken from 
fixed-wing aircraft, or up to six levels when using oblique images taken from a helicopter or the like9)–13). 

In the case of large disasters, however, damage detection by visual means can be problematic— 
requiring much time and many personnel. Research has, therefore, been conducted into the automatic 
assessment of building damage using aerial photographs and machine learning techniques, including deep 
learning14)–21). This has shown that machine learning, using post-quake images, can facilitate the automatic 
identification of collapsed or swept-away buildings14)–20) and blue tarp-covered buildings21) with a high 
degree of precision. 

Our group, on the other hand, have also developed two machine learning models that classify 
building damage into four levels, to enable damage assessment to be carried out even when earthquakes 
cause many buildings to be half or even completely destroyed, although not collapsed. These models were 
developed using vertical images taken by a fixed-wing aircraft just after the main shock of the 2016 
Kumamoto Earthquake22), 23). One of the models we have developed is for SVM classification based on 
image characteristic amounts, and the other is a deep learning model using a convolutional neural network. 
When these two techniques were compared in terms of damage detection accuracy, the deep learning 
model was found to be the more accurate. However, since this deep learning model has been optimized 
for use with the images acquired after the main shock of the 2016 Kumamoto Earthquake, there is a 
problem with decreased accuracy due to its inability to accurately distinguish between buildings and non-
buildings and to accurately determine the degree of damage when applied to the aftermath of other 
earthquakes, although it will still exhibit relatively high detection accuracy when applied to other aerial 
photographs taken in the 2016 Kumamoto Earthquake around the same time. This issue is described in 
further detail in Section 4.1, based on actual verification results. 

Since the present study aims to make the best use of a building damage detection model to support 
disaster responses, it is necessary to be able to quickly and accurately identify damage not just from past 
earthquakes but also in the event of any future disaster. Therefore, in order to improve the generalization 
performance of the existing model22), deep learning was performed using six kinds of aerial photograph 
taken under different imaging conditions and for more than one earthquake. First, using vertical aerial 
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photographs taken just after the onset of the 1995 Southern Hyogo Prefecture Earthquake, the 2011 off 
the Pacific Coast of Tohoku Earthquake, the foreshock and main shock of the 2016 Kumamoto Earthquake, 
and the 2018 Hokkaido Iburi Eastern Earthquake, damage levels sustained by buildings shown in the 
images obtained were classified into four levels. Comparing these degrees of damage with those obtained 
by field surveys, we confirmed that damage could be identified at practically feasible levels of accuracy 
with up to three degrees of damage. 

Next, we developed an automatic classification model for building damage that was capable of 
determining damage ratings for a wider-than-normal range of aerial photographs by performing deep 
learning—using these ratings and building images extracted from various different aerial photographs as 
training data. Employing this model, we then developed a program for generating colored images from 
aerial photographs where the color shows the degree of building damage. We also emphasized speed of 
operation, enabling users to quickly identify regions with a high concentration of damage and to determine 
the overall degree of damage by superposing output images and aerial photographs, even if aerial 
photographs were the only data source available. Furthermore, we tried to make it possible to compile 
data on the number of buildings by degree of three damage levels, if polygon data for buildings were 
available, by superposing the data with such images and classifying the degrees of damage by setting 
threshold levels. 

As stated above, the present study was aimed at helping various governmental and private 
organizations in Japan to speed up and streamline their actions to ensure a quick recovery from earthquake 
disasters involving major damage to wooden buildings with varying degrees of destruction by developing 
a higher generalization performance and effective damage detection model that would allow them to 
immediately assess the overall state of damage. 

2. PREPARATION OF TRAINING DATA

2.1 Procedures for visually checking aerial photographs 

The training data used in the present study were derived from several target earthquakes that were selected 
from among the various disasters that had recently occurred in Japan. Specifically, we used data on 
building damage that were classified by visually checking vertical aerial photographs taken from fixed-
wing aircraft for more than one earthquake that damaged wooden buildings over a wide area due to 
seismic motions (at an intensity of 6-lower or more) and compared them with aerial photographs obtained 
soon after the onset of the disaster. As shown in Table 1, imaging conditions were classified into six types. 
The data used for the 1995 Southern Hyogo Prefecture Earthquake were obtained by scanner-digitizing 
and orthographic processing of 23 aerial photographs of Kobe and Ashiya that had been taken by 
Nakanihon Air Co., Ltd., using an analogue camera on the day of the disaster (Fig. 1). The data used for 
the 2011 off the Pacific Coast of Tohoku Earthquake were obtained from 20 orthographic images that had 
been taken by PASCO Corporation above Sendai City, using a digital area sensor (UCX), within one 
month of the disaster (Fig. 2). The data used for the 2016 Kumamoto Earthquake were obtained from 13 
and 20 orthographic images that had been taken by PASCO Corporation over Mashiki Town and other 
affected regions, using a digital multiline sensor (ADS), several days after the foreshock of April 14 and 
the main shock of April 16, respectively (Figs. 3 and 4). For generalization performance verification 
purposes, locations of training data and test data were exchanged after the foreshock (Fig. 3) and main 
shock (Fig. 4). The data used for the main shock of the 2016 Kumamoto Earthquake were obtained from 
17 orthographic images that had been taken above Minami-Aso Village and Nishihara Village using a 
UCX (Fig. 5). The data used for the 2018 Hokkaido Iburi Eastern Earthquake were obtained from 10 
orthographic images in regions where the intensity was estimated to be 5-upper or greater using the J-
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RISQ real-time damage estimation system3), and where a relatively large number of buildings were 
present, using aerial photographs that had been taken by PASCO Corporation above Chitose City, Abira 
Town, Atsuma Town, and Mukawa Town using a UCX, several days after the onset of the earthquake 
(Fig. 6). Referring to the left panels in Figs. 1–6, the blue/gray-framed images are aerial photographs for 
training; the red-framed images are aerial photographs for testing (A and B show how to acquire the 
training data described in Section 2.3 below); the background map indicates estimated quake intensities 
based on a J-RISQ earthquake report3). The purple-framed images in the right panel are aerial photographs 
following the frame-to-frame cross validation described in Section 4.5 below. 

Fig. 1 Training data for the 1995 Southern Hyogo Prefecture Earthquake (left panel, aerial photographs; 
right panel, masked images) 

Fig. 2 Training data for the 2011 off the Pacific Coast of Tohoku Earthquake 
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Fig. 3 Training data for the 2016 Kumamoto Earthquake (foreshock) 

Fig. 4 Training data for the 2016 Kumamoto Earthquake (main shock, around Mashiki Town) 

Fig. 5 Training data for the 2016 Kumamoto Earthquake (main shock, around Minami-Aso Village) 
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Fig. 6 Training data for the 2018 Hokkaido Iburi Eastern Earthquake 

Table 1 Imaging conditions for visually checked aerial photographs 

Year of 
imaging 

Date of 
imaging 

Imaging 
organization 

Imaging 
equipment 

Resolution 
Number of 

images 
Southern Hyogo 

Prefecture Earthquake 
1995 January 17 

Nakanihon Air 
Co., Ltd. 

Analogue 4 cm 23

off the Pacific Coast of 
Tohoku Earthquake 

2011 
March-

April 
PASCO 

Corporation 
Area sensor 20 cm 20 

Kumamoto Earthquake 
(foreshock) 

2016 April 15 
PASCO 

Corporation 
Line sensor 20 cm 13 

Kumamoto Earthquake 
(main shock)  

Mashiki Town 
2016 April 19 

PASCO 
Corporation 

Line sensor 20 cm 20 

Kumamoto Earthquake 
(main shock) 

Minami-Aso Village 
2016 April 19 

PASCO 
Corporation 

Area sensor 20 cm 17 

Hokkaido Iburi Eastern 
Earthquake 

2018 
September 

11 
PASCO 

Corporation 
Area sensor 20 cm 10 

The actual spatial region included in each aerial photograph covered 0.4 km × 0.3 km for the 1995 
Southern Hyogo Prefecture Earthquake and 2 km × 1.5 km for the other earthquakes. Since the 1995 
Southern Hyogo Prefecture Earthquake had a different image resolution, we unified the sizes of the 
buildings in the patch images by reducing the image size to a resolution of 20 cm when identifying those 
patch images to be used as deep learning training data (described in Section 2.3 below). 

Prior to preparing training data, building damage ratings were first classified into four levels by 
visually checking each aerial photograph, and building damage data were constructed with the use of 
polygons in the Japan Basic Map Information (Buildings) package24) on ArcGIS. Even when an overlay 
showed a shape discrepancy between the buildings in the aerial photographs and the polygons, the most 
severely damaged building in the polygon was targeted for labeling with the appropriate level of damage. 
When no building was present in a polygon, the polygon was removed from the building training data. In 
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contrast, when a building was found in the aerial photograph but there was no building polygon, no 
training data, as a rule, were newly constructed. For the 1995 Southern Hyogo Prefecture Earthquake, 
however, polygons were prepared by tracing building portions on aerial photographs using ArcGIS, since 
there was a major discrepancy between the building locations at the time of the onset of the earthquake 
and the polygons in the Japan Basic Map Information. The criteria used for the level of damage were the 
same as those in previous reports22), 23), 25). When referring to a damage pattern chart for wooden 
buildings26), the criteria were defined to allow building damage to be rated using aerial photographs alone 
(Table 2). 

Next, the building regions in the aerial photographs were classified by level of damage into the four 
colors shown in Table 2, using the building damage data, and a masked image was prepared with the non-
building portions masked black. The above procedures yielded building damage GIS data for a total of 
111,686 buildings (Table 3) and 103 masked images from 103 visually checked aerial photographs. These 
data and images were then used as the training data for the subsequent deep learning stage (training and 
testing data are described in Section 2.3 below). The coverage of the visually checked aerial photographs 
and the masked images are shown in Figs. 1–6.  

Table 2 Definitions of building damage levels derived from aerial photographs22), 23), 25) 

Degree of damage Photographic features (any one is met) 
Correspondence to 
Okada and Takai26) 

Color (RGB) 

LEVEL 1 
(no damage) 

Damage unidentifiable from aerial photographs D0 
Green 

(0,255,0) 
LEVEL 2 

(minor damage) 
Some roof tiles were dislodged, with the roof 
partially covered with blue tarp 

D1 
Yellow 

(255,255,0) 

LEVEL 3 
(moderately damaged) 

Most roof tiles were dislodged, with the roof 
mostly covered with blue tarp and some walls 
detached 

D2, D3 
Orange 

(255,127,0) 

LEVEL 4 
(severely damaged) 

Marked inclinations, shifts or deformation of 
the entire building 
Story destruction and collapse 

D4, D5 
Red 

(255,0,0) 

Table 3 Number of damaged buildings within the scope of the training data constructed 

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 Total 

1995 Southern Hyogo 
Prefecture Earthquake 

1,880 548 396 534 3,358 

2011 off the Pacific Coast of 
Tohoku Earthquake 

47,338 5,416 1,894 47 54,695 

2016 Kumamoto Earthquake 
(foreshock) 

9,734 2,706 512 209 13,161 

2016 Kumamoto Earthquake 
(main shock,  

Mashiki Town) 
20,201 6,161 2,674 1,570 30,606 

2016 Kumamoto Earthquake 
(main shock,  

Minami-Aso Village) 
789 295 119 54 1,257 

2018 Hokkaido Iburi Eastern 
Earthquake 

8,440 113 28 28 8,609 

Total 88,382 15,239 5,623 2,442 111,686 
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2.2 Verification of accuracy after visually checking aerial photographs 

In the present study, data on the four building damage levels determined by visually checking vertical 
aerial photographs were used as training data to build a damage detection model. Since the objective of 
the study was to use this model to support disaster responses, it was necessary to verify the correspondence 
between the damage levels determined by visual checking of aerial photographs and actual levels of 
building damage. This was determined by comparing visual check results with damage level data from an 
actual field survey. 

Fig. 7 Comparison of levels of building damage in a field survey (upper panel) and after checking aerial 
photographs (lower panel)28), 29) 
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We used the results from a visual appearance survey of building damage conducted around the 
Miyazono area in Mashiki Town from May to October 2016, just after the onset of the 2016 Kumamoto 
Earthquake27) as field survey data for comparison purposes. In the survey, the level of damage to each 
building was classified into six levels (D0 to D5) based on a damage pattern chart26). For the 5,520 
buildings in the same area, shown in Fig. 7, field survey results27) and damage levels based on visual 
checking of aerial photographs25) were compared using confusion matrices. The correspondence between 
the six damage levels in the field survey and the four damage levels in the visually checked aerial 
photographs was defined as shown in Table 2. In this correspondence of the various damage levels, the 
combination showing the highest correlation coefficient was selected28). 

The term confusion matrix (Table 4) refers to a matrix showing label concordance between predicted 
data and actual data, in which the terms “true positive (TP)”, “false positive (FP)”, “false negative (FN)”, 
and “true negative (TN)” were defined in terms of label concordance/non-concordance. Usually, “recall,”, 
“precision,”, “F-measure,”, and “accuracy” are also used as performance indicators in a confusion 
matrix22) (Table 5). 

Table 4 Confusion matrix 

Prediction (aerial 
photograph ratings) 

Positive Negative 

R
ight answ

er 
(field surveys) 

Positive 
True 

positive 
(TP) 

False 
negative 

(FN) 

Negative 
False 

positive 
(FP) 

True 
negative 

(TN) 

Table 5 Performance indicators 

Index Method of calculation

Recall 
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁

Precision 
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃

F-measure
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅

1
𝑅𝑒𝑐𝑎𝑙𝑙

Accuracy 
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁 ൅ 𝑇𝑁

Table 6 shows confusion matrices for the building quantity relationships based on a comparison 
between the levels of damage derived from the visual checking of aerial photographs and field surveys. It 
can be seen that both the precision and recall were no lower than 70% in the relationship between LEVEL 
1 in the visually checked aerial photographs and D0 in the field survey, and the relationship between 
LEVEL 4 in the visually checked aerial photographs and D4+D5 in the field survey, whereas in the 
relationships between the intermediate damage levels LEVEL 2 and D1 and between LEVEL 3 and 
D2+D3, the recall was approximately 31% to 43% and the precision was approximately 44%. Overall, 
the average recall for all the levels was approximately 58.2%. This finding is attributable to the fact that 
the focus differed between the different study approaches, and that wall cracks, detachments, etc., are 
sometimes overlooked when using vertical aerial photographs only29). As shown in Fig. 8, therefore, the 
proportion of undamaged buildings (LEVEL 1) in all ratings tended to be slightly higher with aerial 
photographs, while the proportion of largely damaged buildings (LEVEL 4) was generally similar. In 
damage detection using vertical aerial photographs only, the detection accuracy tends to decrease with 
decreasing degree of damage, and this tendency was also noted in previous studies using damage survey 
data from the 1995 Southern Hyogo Prefecture Earthquake9) and the 2011 off the Pacific Coast of Tohoku 
Earthquake28). 

In the present study, therefore, the relatively low damage levels (LEVEL 2 and LEVEL 3) were 
merged to produce only three levels in total (LEVEL 1, LEVEL 2+3, LEVEL 4) in the visual checking of 
aerial photographs. Similarly, the data from the field survey were also reviewed using three levels of 
damage: D0 (no damage), D1–D3 (partial to half collapse), and D4 and D5 (complete collapse). The 
resulting data were compared using confusion matrices (Table 7). In this case, the recall and precision for 
LEVEL 2+3 both improved to approximately 62.1% and 75.7%, respectively, and the average recall and 
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average precision for the three levels, overall, were approximately 73.9% and 73.6%, respectively. 
Therefore, the system of classification involving three damage levels was found to produce higher 
accuracy for training data. 

Table 6 Confusion matrices comparing a field survey and visual check of aerial photographs28), 29) (four 
damage levels) 

Visual check of aerial photographs 
Recall (%) 

F-measure
(%)

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 Total 

Field survey 

D0 1,878 237 69 21 2,205 85.2 77.7 
D1 470 409 414 39 1,332 30.7 36.1 

D2+D3 223 213 458 180 1,074 42.6 43.3 
D4+D5 59 72 102 676 909 74.4 74.1 
Total 2,630 931 1,043 916 5,520 - - 

Precision (%) 71.4 43.9 43.9 73.8 - 
Accuracy 

(%) 62.0 

Table 7 Confusion matrices comparing a field survey and visual check of aerial photographs (three 
damage levels) 

Visual check of aerial photographs 
Recall (%) 

F-measure
(%)

LEVEL 1 LEVEL 2+3 LEVEL 4 Total 

Field 
survey 

D0 1,878 306 21 2,205 85.2 77.7 

D1+D2+D3 693 1,494 219 2,406 62.1 68.2 

D4+D5 59 174 676 909 74.4 74.1 
Total 2,630 1,974 916 5,520 - - 

Precision (%) 71.4 75.7 73.8 - 
Accuracy (%) 

73.3 

Fig. 8 Proportion of data from a field survey (left panel) and visual check of aerial photographs (right 
panel) (5,520 buildings in total)28) 
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These findings show that, when using only post-quake vertical aerial photographs to assess the state 
of building damage, it is appropriate, from a practical viewpoint, to classify damage into three levels: “no 
damage,”, “minor to moderate damage”, and “severe damage”. In the present study, we also developed a 
deep learning model in which the extent of damage was automatically classified into four levels using 
visual check results based on the more extensive 4-level classification used as training data. With this in 
mind, the model output imaging results shown below are displayed using the 4-level classification 
described in the present article. In the discussion of detection accuracy, however, LEVEL 2 and LEVEL 
3 were merged to obtain only three levels of damage: LEVEL 1 (no damage), LEVEL 2+3 (minor to 
moderate damage), and LEVEL 4 (severe damage). Likewise, the 3-level classification was used for the 
number of damaged buildings, as described in detail in Section 4.6 below. 

2.3 Automatic identification of patch images 

In image recognition by machine learning, the usual approach is to use small images prepared by cutting 
out the portions around the target object from the entire image, which contains various objects (patch 
images)30). In the present study, 80-pixel square patch images, which contained the majority of ordinary 
houses, were automatically extracted from the entire area shown on each aerial photograph to yield deep 
learning training data. The identified patch images were then classified into five categories: LEVEL 1, 
LEVEL 2, LEVEL 3, LEVEL 4, and non-buildings. The non-buildings category included random non-
building items such as trees, mountainous areas, grass fields, agricultural land, parking lots, railways and 
roads. Examples of patch images taken from aerial photographs of the various earthquakes examined are 
shown in Fig. 9. 

Fig. 9 Examples of patch images from the various earthquakes 

Patch images were automatically acquired using two methods: (A) Data were acquired exclusively 
from aerial photographs showing relatively high damage levels, in order to obtain training data for both 
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highly damaged buildings and for non-buildings. (B) Data were uniformly acquired preferentially for 
buildings shown on aerial photographs in order to increase the varieties of training data available for 
various damage levels (Fig. 10). The scan span was set at 20 pixels for aerial photographs from the 1995 
Southern Hyogo Prefecture Earthquake, which covered a small area in each photo, and at 40 pixels for 
other aerial photographs (Table 8). 

Fig. 10 Outline of various methods used for automatic acquisition of patch images28) 
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Table 8 Definitions of methods used for automatic acquisition of patch images 

Method 
Target aerial 
photograph 

Target label Method of patch acquisition 

A 

One image for 
training 

One image for 
testing 

Buildings 

The entire area was scanned with a scan span of 40 pixels. When 
the patch contained no less than 30% of building polygons it was 
acquired as damage level data (scan span set at 20 pixels for the 
1995 Southern Hyogo Prefecture Earthquake only) 

Non-
buildings 

The entire area was scanned with a scan span of 40 pixels. When 
the patch and 40-pixel portion around it contained no building 
polygons it was acquired as non-building data (scan span set at 
20 pixels for the 1995 Southern Hyogo Prefecture Earthquake 
only) 

B 
Other images for 

training 
Buildings 

Data on the level of damage for each building were acquired 
one-by-one, based on the center of gravity of the building 
polygon. 

Specific procedures are described below. First, one training photo and one testing photo were selected 
from among the range of aerial photographs from each earthquake, and respective patch images were 
automatically identified using method A. Next, using the remaining aerial photographs, patch images were 
automatically identified using method B. The training patch images acquired using methods A and B were 
merged for use as training data. The locations of the aerial photographs used as training data (methods A 
and B used in combination) and test data (method A only), as described above, are shown in Figs. 1–6, 
respectively. A total of 431,974 items of training and testing data were automatically acquired using the 
above procedures (Table 9). For generalization performance verification, after the foreshock and main 
shock in the 2016 Kumamoto Earthquake, locations were exchanged to prevent the training data and 
testing data acquired using method A being duplicated in the same place (Figs. 3 and 4). 

Next, to improve the quality of training data, an image checker (other than the visual checker used 
for the aerial photographs) visually checked each patch image and removed data that seemed to be difficult 
to classify from patch images alone for any of the following reasons (Fig. 11). This screening yielded a 
total of 409,818 patch images for use as training and testing data (Table 10). The reasons of data removal 
are as follows, and the impacts of this data screening on the detection accuracy are described in Section 
4.3 below. 
 The items in the image are difficult to perceive because of the large unwanted images of the outer

frames of the aerial photographs and reflected light.
 Buildings are difficult to identify because the images were too dark or hidden by vegetation etc.
 Because there are marked differences in building location between building polygons and aerial

photographs, non-buildings were cut out as buildings, or buildings were cut out as non-buildings.
 There are markedly different buildings around the target building, which have different levels of

damage.
 The checker’s assessments differed markedly between aerial photograph ratings and the visual

check of images.
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Fig. 11 Examples of patch images excluded from the training data 

Table 9 Number of automatically identified patch images 

Target 
earthquake 

Type (method of 
determination) 

Non-
buildings 

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 Total 

1995 Southern 
Hyogo 

Prefecture 
Earthquake 

For training (A) 1,484 1,354 125 150 591 3,704  
For training (B) 0 909 177 99 216 1,401  

For testing (A) 1,462 1,450 219 115 275 3,521  

2011 off the 
Pacific Coast of 

Tohoku 
Earthquake  

For training (A) 5,187 19,492 675 145 5 25,504  
For training (B) 0 36,281 4,066 1,504 30 41,881  

For testing (A) 27,795 4,208 849 399 24 33,275  

2016 Kumamoto 
Earthquake 
foreshock 

For training (A) 36,119 1,499 692 105 39 38,454  
For training (B) 0 5,059 1,178 190 61 6,488  
For testing (A) 19,635 5,207 2,604 788 241 28,475  

2016 Kumamoto 
Earthquake 

(Mashiki Town) 

For training (A) 19,565 3,424 1,180 1,922 2,064 28,155  
For training (B) 0 14,532 4,665 1,520 533 21,250  
For testing (A) 35,894 889 437 458 490 38,168  

2016 Kumamoto 
Earthquake 

(Minami-Aso 
Village) 

For training (A) 42,560 243 224 84 35 43,146  
For training (B) 0 592 214 80 31 917  

For testing (A) 42,168 547 107 70 70 42,962  

2018 Hokkaido 
Iburi Eastern 
Earthquake  

For training (A) 37,247 1,988 23 5 17 39,280  
For training (B) 0 5,336 58 16 9 5,419  
For testing (A) 24,402 5,502 37 2 31 29,974  

Grand total 293,518 108,512 17,530 7,652 4,762 431,974  
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Table 10 Number of patch images following visual screening 

Target 
earthquake 

Type (method of 
determination) 

Non-
buildings 

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 Total 

1995 Southern 
Hyogo 

Prefecture 
Earthquake 

For training (A) 509 1,071 80 127 333 2,120  
For training (B) 0 754 89 85 133 1,061  

For testing (A) 778 1,280 170 87 140 2,455  

2011 off the 
Pacific Coast of 

Tohoku 
Earthquake 

For training (A) 5,176 18,898 378 75 2 24,529  
For training (B) 0 35,571 3,359 1,261 15 40,206  

For testing (A) 27,788 3,638 562 337 11 32,336  

Foreshock of the 
2016 Kumamoto 

Earthquake 

For training (A) 36,106 1,221 165 36 9 37,537  
For training (B) 0 4,075 881 123 45 5,124  
For testing (A) 19,158 4,859 1,644 683 137 26,481  

2016 Kumamoto 
Earthquake 

(Mashiki Town) 

For training (A) 19,467 2,785 306 1,251 1,187 24,996  
For training (B) 0 12,936 3,378 1,254 336 17,904  
For testing (A) 35,887 707 148 153 184 37,079  

2016 Kumamoto 
Earthquake 

(Minami-Aso 
Village) 

For training (A) 41,409 179 116 49 20 41,773  
For training (B) 0 463 112 75 13 663  

For testing (A) 41,486 508 34 35 44 42,107  

2018 Hokkaido 
Iburi Eastern 
Earthquake 

For training (A) 36,462 1,936 11 1 2 38,412  
For training (B) 0 5,296 18 10 5 5,329  
For testing (A) 24,228 5,449 8 2 19 29,706  

Grand total 288,454 101,626 11,459 5,644 2,635 409,818  
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3. DEVELOPING A DAMAGE DETECTION MODEL USING DEEP LEARNING

In the present study, a damage detection model was developed using a convolutional neural network 
(CNN) —a deep learning technique with confirmed high performance for image classification31). In the 
CNN, features were extracted by combining, in multiple stages, a convolution layer in which convolution 
computing was performed for each pixel zij of the image uij with the filter hpq of the size (H×H) (Eq. (1)), 
and a pooling layer in which the image was compressed by extracting a representative value (maximum 
in the present study) from the pixel zpq in the layer region Pij (Eq. (2)). In the final layer, i.e., the fully 
connected layer, the probability yk that the input x belongs to the class Ck was output using the Softmax 
function (Eq. (3)). To minimize the cross entropy En (Eq. (4)) indicating the error between this output 
value yk and the training dataset tn,k, the weighting parameter hpq was updated using the error back 
propagation method (a method in which the value δ obtained by differentiating the En by the input value 
uij (Eq. (5)) is calculated retrogradely toward the input layer (l-1 layer) side), and repeated calculations 
were made until the error became a minimum value32) (Fig. 12). 
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In the present study, improvements were made to enable simultaneous learning using multiple 
datasets with increased generalization performance, on the basis of a CNN model developed in a prior 
study22). The CNN model, like those described in the literature22), was based on VGG-1633) However, 
VGG-16 originally assumed 224-pixel square input images, losing image texture in the downstream 
pooling layer, thus reducing the detection accuracy28). For this reason, the model was rebuilt with the 
convolution layer shallowed according to the 80-pixel square patch image (Table 11).  

In addition, the model described in the literature22) showed learning instability due to increased 
variation in precision and loss values for each epoch. Therefore, the stochastic gradient descent (SGD) 
method was used for optimization to linearly reduce the learning coefficient for each epoch and to stabilize 
the loss function value. In addition, efforts were made to reduce the variation in training data and improve 
distinguishing performance by adding batch normalization layers and dropout layers. In building this 
model, the deep learning framework Keras34) and the Python programming language were used. Table 12 
summarizes a comparison of the models described in the literature22) and the present study. The selected 
CNN parameters used are shown in Table 13. 

(1) 

(2) 

(3) 

(4) 

(5) 
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Fig. 12 Outline of CNN-based machine learning model28) 

Table 11 Rebuilt CNN model28) 

Layer Data size Filter size Stride 
Activation 
function 

Input 80×80×3 - - - 
Convolution layer 80×80×64 3×3 1 ReLU 

Batch normalization layer 80×80×64 - - - 
Convolution layer 80×80×64 3×3 1 ReLU 

Batch normalization layer 80×80×64 - - - 
Pooling layers 40×40×64 2×2 2 - 

Convolution layer 40×40×128 3×3 1 ReLU 
Batch normalization layer 40×40×128 - - - 

Convolution layer 40×40×128 3×3 1 ReLU 
Batch normalization layer 40×40×128 - - - 

Pooling layers 20×20×128 2×2 2 - 
Convolution layer 20×20×256 3×3 1 ReLU 

Batch normalization layer 20×20×256 - - - 
Convolution layer 20×20×256 3×3 1 ReLU 

Batch normalization layer 20×20×256 - - - 
Convolution layer 20×20×256 3×3 1 ReLU 

Batch normalization layer 20×20×256 - - - 
Pooling layers 10×10×256 2×2 2 - 

Fully connected layer 1×1×1024 - - ReLU 
Dropout layer 1×1×512 - - - 

Fully connected layer 1×1×1024 - - ReLU 
Dropout layer 1×1×512 - - - 

Fully connected layer 1×1×5 - - Softmax 
Output - - - - 
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Table 12 Comparison with a damage detection model reported in a prior study 

Model described in the literature22) Model in the present study 

CNN composition 
Convolution layers: 13 layers 
Pooling layers: 5 layers 
Fully connected layers: 2 layers 

Convolution layers: 7 layers 
Pooling layers: 3 layers 
Fully connected layers: 3 layers 

Acquisition of learning 
data 

Learning with use of some data (5,000 
data items for each class) extracted 
from all data 

Learning with 1000 randomly acquired 
data items per 2 epochs for each class with 
data exchange 

Data augmentation No Yes 
Learning coefficient Fixed value Linearly attenuated for each epoch 

Method of optimization Adam SGD 

Model adoption criteria 
The model of epochs showing the 
highest accuracy was adopted. 

The model of epochs showing the largest 
minimum value of recall was adopted. 

Framework MXNet Keras

The training algorithm used in the present study is described in detail below. First, the training data 
were divided into those for training and those of verification. In the first epoch, CNN-based learning was 
performed on the basis of 100 mini-batches using 1000 data items randomly extracted from among the 
training data for each of the five classes (four damage levels + non-buildings). In this case, data 
augmentation (lateral reversal and RGB brilliancy value ± five random shifts) was performed to yield 
1000 data items even when there were less than 1000 originally present. In the next epoch, learning was 
performed again using 1000 data items acquired in the previous epoch. Thereafter, 1000 new data items 
were randomly extracted for an even-numbered epoch, followed by data augmentation, whereas for an 
odd-numbered epoch, learning was performed using the data acquired in the previous epoch. This 
procedure was performed repeatedly. Class rating was performed for each epoch using verification data 
in order to calculate the minimum recall for each class as the assessment value V. Following the above 
procedure, a model of the epoch for the maximum assessment value V, after the end of the last epoch, was 
adopted as the training model (Fig. 13). The above procedure was performed for both training and 
detection, and it was found that the detection accuracy of the verification data eventually stabilized28). In 
the dataset used in the present study, the detection accuracy of verification data stabilized within 500 to 
2000 epochs, as shown in Fig. 14. Here are the time courses of detection accuracy and loss function in 
10-fold cross validation performed using the learning data shown in Table 10. Therefore, the final model
was developed basically using 2000 epochs. In the cross validation described in Section 4.5 below,
however, the learning time was greatly prolonged, so the number of attempts was set at 500 epochs.

By performing learning using 1000 data items for each class, as described above, the numbers for 
each class became constant, preventing over-learning for any particular class. In addition, efforts were 
made to prevent over-learning by exchanging the data for every two epochs, and to shorten the data 
reading time. Furthermore, the use of a model for the maximum assessment value made it possible to 
improve the data accuracy for every class even when the number of data items was not uniform among 
the various classes. 
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Fig. 13 Training model flow chart28)

Table 13 CNN parameters 

Parameter Set value

Activation function ReLU 

Mini-batch size 100 

Method of 

optimization 

SGD 

Learning coefficient 10-3 – 10-10

Weight attenuation 0 

Number of attempts 500 – 2000 epoch 

Fig. 14 Rating accuracy and loss function for each epoch

4. VERIFICATION OF THE ACCURACY OF DAMAGE DETECTION MODELS

4.1 Generalization performance issues in models reported in previous studies 

As noted earlier, some issues regarding the generalization performance of the model have been reported 
in the literature22). In this study, a total of 42,900 training data items obtained after the main shock of the 
2016 Kumamoto Earthquake (Mashiki Town) (Table 10) were learned using the model described in the 
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literature22). Thereafter, damage detection results were determined for all areas from the various aerial 
photographs taken following the main shock of the 2016 Kumamoto Earthquake, the 1995 Southern 
Hyogo Prefecture Earthquake, and the 2011 off the Pacific Coast of Tohoku Earthquake (at the locations 
shown in Fig. 4, Fig. 1, and Fig. 2, respectively) that were used for testing. The results are shown in Fig. 
15. Each image was examined using a program in which damage detection results for an 80-pixel square
patch were determined by scanning the entire area of the aerial photograph. Details of the procedures of
image preparation used have already been published elsewhere in the literature22), 28) and have, therefore,
been omitted here.

Aerial 

photograph 

Kumamoto (mainshock) Hyogo Tohoku 

Visual 

checking 

of an aerial 

photograph 

Overlay of 

visual 

checking 

on an aerial 

photograph 

Damage 

detection 

result using 

the prior 

model 

Overlay of 

detection 

result on an 

aerial 

photograph 

Fig. 15 Detection results from unlearned aerial photographs using a model reported in a prior study22) 
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The first row in Fig. 15 shows the results from the main shock of the 2016 Kumamoto Earthquake 
(Mashiki Town); the second row shows the 1995 Southern Hyogo Prefecture Earthquake; and the third 
row shows the 2011 off the Pacific Coast of Tohoku Earthquake. The first line shows one of the aerial 
photographs used with a scale added. The second line shows an image colored for various building 
polygons on the basis of the results of visual checking of aerial photographs, with a scale and legend 
added. The third line shows an overlay of a visual checking image on an aerial photograph at a 
transmittance of 50%. The fourth line shows a damage detection image in a prior-study model of learning 
data for the main shock of the 2016 Kumamoto Earthquake only. The fifth line shows an overlay of an 
image of damage detection results on an aerial photograph at a transmittance of 50%. When comparing 
the visual check results on the second and third lines and the damage detection results on the fourth and 
fifth lines in each earthquake, it can be seen that the images from the 2016 Kumamoto Earthquake, which 
were of the same kind as the learning data, generally performed well in extracting the distributions and 
total volumes of LEVEL 1 and LEVEL 4 buildings. However, in the images from the 1995 Southern 
Hyogo Prefecture Earthquake, the upper left zone, which was painted white at the time of digitization 
since it was outside the range of aerial photographs, was misidentified as LEVEL 1 and many damaged 
buildings were misidentified as non-buildings meaning that, overall, the levels of damage seem to have 
been underrated. For the 2011 off the Pacific Coast of Tohoku Earthquake, many buildings were mis-
identified as non-buildings and LEVEL 4 was over-identified. 

Figure 16 shows plots of detection accuracy (recall, precision, F-measures) for testing data in various 
different cases (Table 10). When assessing the main shock of the 2016 Kumamoto Earthquake, the average 
recall for the various levels of damage was approximately 60.2%, the average precision was 
approximately 49.1%, and the average F-measure was approximately 52.6%. In the 1995 Southern Hyogo 
Prefecture Earthquake, the average recall was approximately 30.9%, the average precision was 
approximately 46.1%, and the average F-measure was approximately 33.2%. In the 2011 off the Pacific 
Coast of Tohoku Earthquake, the average recall was approximately 15.1%, the average precision was 
approximately 43.2%, and the average F-measure was approximately 14.4%. All these values were low. 
The above findings show that the prior-study model is unsatisfactory in terms of generalization 
performance for images taken under different imaging conditions. 

Fig. 16 Recall, precision, and F-measure values for test data with learning using a model described in a 
prior study22) 
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4.2 Comparison of damage detection accuracies between the present model and a prior-study model 

The failure to improve the generalization performance of the prior-study model can be attributed to two 
factors: the training model and the training data. To determine the influence of model improvement on its 
generalization performance, training was performed for shared learning data using models from the 
present study and those reported in the literature22), after which the detection accuracy of each model was 
verified by automatically assessing damage using shared testing data. A total of 239,654 patch images for 
training, extracted from six kinds of aerial photograph, using the method described in Chapter 2, were 
used as the training data (Table 10). 

Results of damage detection using each model for the entire area of the aerial photographs tested are 
shown in Fig. 17. The first row in Fig. 17 shows the results from the main shock of the 2016 Kumamoto 
Earthquake (Mashiki Town); the second row shows the 1995 Southern Hyogo Prefecture Earthquake; and 
the third row shows the 2011 off the Pacific Coast of Tohoku Earthquake. The first line shows one of the 
aerial photographs used with a scale added. The second line shows an image colored for various building 
polygons based on the results of visual checking of the aerial photographs. The third line shows a damage 
detection image obtained by learning using one of the models reported in the literature22). The fourth line 
shows an overlay of a damage detection image obtained using a prior-study model on an aerial photograph 
at a transmittance of 50%. The fifth line shows a damage detection image obtained by learning using the 
present model. The sixth line shows an overlay of a damage detection result from the present model and 
an aerial photograph at a transmittance of 50%. 

When comparing damage detection results in the prior-study model shown in Fig. 17 (third and fourth 
lines) with visual check results (second line), it can be seen that the prior-study model rated more buildings 
as LEVEL 4 than did visual checking of the 2016 Kumamoto Earthquake. In the 1995 Southern Hyogo 
Prefecture Earthquake, the outlined portion outside the scope of aerial photographs was rated as LEVEL 
1, and identification of damage at LEVEL 2 or higher failed. Furthermore, in the 2011 off the Pacific 
Coast of Tohoku Earthquake, non-buildings were rated as LEVEL 4 in some portions—all of which were 
found to have been erroneously identified. In the damage detection results obtained using the present 
model (lines 5 and 6), on the other hand, the detection results for all aerial photographs were in general 
agreement with the overall degrees of damage and areas with concentrated damage identified in the visual 
check results. Therefore, the damage detection accuracy for testing aerial photographs was successfully 
improved, compared with the prior-study model. 

As described above, the prior-study model often underrated or overrated damage levels for different 
test images. This is attributable to the major impact of brilliancy changes due to variation in the imaging 
conditions for different images. In a previous study23), image histogram normalization produced a range 
of improvements. On the other hand, the present model also involved a random shift of brilliancy values 
in learning data expansion, as described in Chapter 3, and efforts were made to make the model more 
robust to brilliancy changes even without histogram normalization. 

Table 14 shows the results of damage detection for 170,164 testing patch images taken from six kinds 
of aerial photograph (Table 10) using the present model. Table 15 shows the results of damage detection 
using a model reported in the literature22). Both sets of data are displayed in the form of a confusion matrix, 
along with the performance indicators shown in Table 5. These results were compared on the basis of the 
average values of the various indicators used for LEVEL 1 to LEVEL 4. In the model developed in the 
present study (CASE 1), the average recall was approximately 75.0%, the average precision was 
approximately 54.7%, and the average F-measure was approximately 62.8%, whereas in the model used 
for the prior study (CASE 2), the average recall was approximately 62.8%, the average precision was 
approximately 30.7%, and the average F-measure was approximately 35.8%. When using any of the 
indicators, the model developed using the method described in the present study was found to be superior 
in terms of damage detection accuracy (Fig. 18). 
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Fig. 17 Damage detection results from unlearned aerial photographs using the present model and a 
model from a prior study22) 
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Table 14 Ratings in the model developed using the method described in the present study (CASE 1) 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 143,942 4,305 792 286 149,325 96.4 97.9 

LEVEL 1 686 13,649 2,049 57 16,441 83.0 78.4 

LEVEL 2+3 37 407 3,253 166 3,863 84.2 64.3 

LEVEL 4 31 33 162 309 535 57.8 45.7 

Total 144,696 18,394 6,256 818 170,164 - - 

Precision (%) 99.5 74.2 52.0 37.8 - Accuracy (%) 94.7 

Table 15 Ratings in a model developed using a method described in the literature22) (CASE 2) 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 137,414 5,749 2,829 3,333 149,325 92.0 95.5 

LEVEL 1 1,028 10,751 3,190 1472 16,441 65.4 63.6 

LEVEL 2+3 98 832 1,921 1012 3,863 49.7 32.3 

LEVEL 4 20 47 76 392 535 73.3 11.6 

Total 138,560 17,379 8,016 6,209 170,164 - - 
Precision (%) 99.2 61.9 24.0 6.3 - Accuracy (%) 88.4 

In all these results, the precision decreased for LEVEL 2+3 and LEVEL 4 compared with non-
buildings and LEVEL 1. This could be because the numbers of testing data for non-buildings and LEVEL 
1 were larger than those for LEVEL 2+3 and LEVEL 4, and the proportion of detection errors might have 
been higher in the former, even when relatively low overall. Likewise, the absolute value of precision for 
LEVEL 2+3 and LEVEL 4 often decreased because of the use of different amounts of testing data in each 
class. The accuracy was affected to a greater extent by non-buildings and LEVEL 1, which contained 
larger amounts of data. For these reasons, the present study emphasized recall as a performance indicator. 
However, precision and F-measure values were also used to help gain an understanding of the relative 
differences in detection performance among the different models’ training data. 

Fig. 18 Variation in detection accuracy among the various classes used for different models and 
different conditions of training data preparation 
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4.3 Influence of visual removal of training data on detection accuracy 

Here, the influence of the training data used on the detection performance is discussed. First, the influence 
of training data screening on the detection accuracy is described. 

Section 2.3 described how data were visually removed when preparing the training data. To 
determine the influence of this step on the detection accuracy, training was performed using training data 
prior to data removal (Table 9) and training data following data removal (Table 10), and then levels of 
damage were assessed using the resulting models on the same testing data. 

Damage detection results for all areas of the aerial photographs used for testing are shown in Fig. 19. 
The first row in Fig. 19 shows the results obtained after the main shock of the 2016 Kumamoto Earthquake 
(Mashiki Town); the second row shows the 1995 Southern Hyogo Prefecture Earthquake; and the third 
row shows the 2011 off the Pacific Coast of Tohoku Earthquake. The first line shows one of the aerial 
photographs used with a scale added. The second line shows an image of visual check results. The third 
line shows an image of detection results with learning of data prior to data removal. The fourth line shows 
an overlay of this image on an aerial photograph at a transmittance of 50%. The fifth line shows an image 
of detection results with data training following data removal. The sixth line shows an overlay of this 
image on an aerial photograph at a transmittance of 50%. It can be seen that a comparison of the images 
on the third and fifth lines shows no major difference in the degree of damage identified before and after 
data removal. 

On the other hand, 176,375 items of training data derived from six kinds of aerial photograph, prior 
to data removal, were used as test data. The resulting confusion matrix for detection results is shown in 
Table 16. When comparing these results and the detection results with training data following data 
removal (Table 9), based on the mean values for each indicator from LEVEL 1 to LEVEL 4, the average 
recall was approximately 67.1%, the average precision was approximately 49.0%, and the average F-
measure value was approximately 55.3% for the detection results prior to data removal (CASE 3). When 
using any of the indicators, the detection accuracy decreased slightly compared with the detection results 
following data removal (CASE 1) (Fig. 18). This finding shows that visual screening of training data is 
effective, at least to some extent, in building a highly generalization performance model. 

Table 16 Ratings obtained in a model without training data removal (CASE 3) 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-

buildings 
LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 143,495 5,172 2,301 388 151,356 94.8 97.1 

LEVEL 1 692 12,235 4,706 170 17,803 68.7 68.4 

LEVEL 2+3 100 502 5,159 324 6,085 84.8 55.2 

LEVEL 4 66 81 442 542 1,131 47.9 42.4 

Total 144,353 17,990 12,608 1,424 176,375 - - 
Precision (%) 99.4 68.0 40.9 38.1 - Accuracy 

(%) 
91.5 
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Fig. 19 Damage detection result differences derived from unlearned aerial photographs in the presence 
and absence of visual removal 
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4.4 Influence of multiplicity of training data on detection accuracy 

Next, the influence of the multiplicity of training data types on the detection accuracy is described— 
comparing simultaneous learning of multiple training datasets acquired under different imaging 
conditions. Figure 20 shows detection results obtained by acquiring training data from one type, two types, 
three types, four types, five types, and six types of aerial photograph used as training data following visual 
removal of data (Table 10) (denoted DATA 1, DATA 2, DATA 3, DATA 4, DATA 5, and DATA 6, 
respectively). This was used to build models, and for assessing damage when testing aerial photographs 
using the models. The first row of Fig. 20 shows the results obtained after the main shock of the 2016 
Kumamoto Earthquake (Mashiki Town). The second row shows the results for the 1995 Southern Hyogo 
Prefecture Earthquake. The third row shows the results for the 2011 off the Pacific Coast of Tohoku 
Earthquake. The first line shows an overlay of an image of detection results with DATA 1 learning on an 
aerial photograph at a transmittance of 50%. The second line shows an overlay of an image of detection 
results with DATA 2 learning on an aerial photograph at a transmittance of 50%. The subsequent lines 
show an overlay of an image of detection results with DATA 3, DATA 4, DATA 5, or DATA 6 learning 
and an aerial photograph at a transmittance of 50%. 

When comparing the various results with the visual check results shown in Fig. 19, it can be seen 
that the detection accuracy was low with a few kinds of training data. For example, damage levels were 
underrated for DATA 1 in the 2016 Kumamoto Earthquake and the 1995 Southern Hyogo Prefecture 
Earthquake, but were overrated in the 2011 off the Pacific Coast of Tohoku Earthquake. Overall, however, 
the degree of consistency with the visual check results increased with increasing types of data, so that the 
best results were obtained when using DATA 6. 

Next, the detection accuracies for 170,164 items of testing data acquired from the six kinds of aerial 
photograph were compared using various different models. The results are shown in Fig. 21. The average 
recall at each damage level was higher for DATA 3, 4, 5 and 6 than for DATA 1 and 2. When comparing 
the various confusion matrices for each case, the rate of visual misidentification of LEVEL 2+3 buildings 
as LEVEL 1 buildings was higher with the use of DATA 1 and 2 (Tables 17 and 18), and the recall for 
LEVEL 2+3 was lower. However, as the number of types of data increased, these classification errors 
decreased and the average recall value increased. With regard to precision, the average precision value 
decreased because the automatic classification results for LEVEL 2+3 using DATA 3, 4 and 5 included 
many visual check results for non-buildings and LEVEL 1 (Tables 19 to 21). The proportions of these 
classification errors decreased with DATA 6, and this also produced the highest results for average 
precision at each damage level (Table 22). As a result, the average recall, average precision, and average 
F-measure for each damage level were all maximized with DATA 6.

Therefore, when considering damage classification for testing data collected under various different 
conditions, classification errors, etc., can sometimes occur depending on the combination of data used 
when there are fewer kinds of training data than test data. However, it can be seen that both the average 
recall and the average precision improved in the model when a sufficient number of different types of 
training data suitable for the test data were available. 

While the number of datasets used for learning increased from DATA 1 to DATA 6, the number of 
data items used for epoch-by-epoch learning was uniformly set at 1000 for each class, as stated in Chapter 
3. Therefore, the improved accuracy can be attributed to the abundance of different kinds of training data,
rather than to the increase in the amount of training data.
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Fig. 20 Superposition of damage detection results and aerial photographs with different kinds of training 
data (The color classes of the various detection results are the same as those shown in Fig. 19) 
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Fig. 21 Damage detection accuracy differences, by class, with different kinds of training data

Table 17 Damage detection results for test data in the model trained by DATA 1 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 135,289 9,611 2,967 1,458 149,325 90.6 94.6 

LEVEL 1 1,384 13,348 434 1275 16,441 81.2 65.2 

LEVEL 2+3 75 1437 1,798 553 3,863 46.5 39.4 

LEVEL 4 38 104 76 317 535 59.3 15.3 

Total 136,786 24,500 5,275 3,603 170,164 - - 
Precision (%) 98.9 54.5 34.1 8.8 - Accuracy (%) 88.6 

Table 18 Damage detection results for test data in the model trained by DATA 2 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 
Non-buildings 145,170 2,667 246 1,242 149,325 97.2 97.9 

LEVEL 1 1,812 13,747 574 308 16,441 83.6 80.2 

LEVEL 2+3 186 1,367 1,989 321 3,863 51.5 58.9 

LEVEL 4 35 65 78 357 535 66.7 25.8 

Total 147,203 17,846 2,887 2,228 170,164 - - 
Precision (%) 98.6 77.0 68.9 16.0 - Accuracy (%) 94.8 

Table 19 Damage detection results for test data in the model trained by DATA 3 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 133,661 10,495 4,345 824 149,325 89.5 94.2 

LEVEL 1 643 12,144 3,399 255 16,441 73.9 61.6 

LEVEL 2+3 61 299 3,101 402 3,863 80.3 41.8 

LEVEL 4 35 25 119 356 535 66.5 30.0 

Total 134,400 22,963 10,964 1,837 170,164 - - 
Precision (%) 99.5 52.9 28.3 19.4 - Accuracy (%) 87.7 

- 100 -



Table 20 Damage detection results for test data in the model trained by DATA 4 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 115,645 9,671 21,962 2,047 149,325 77.4 87.1 

LEVEL 1 525 12,635 3,051 230 16,441 76.9 64.5 

LEVEL 2+3 43 394 2,987 439 3,863 77.3 18.7 

LEVEL 4 15 35 95 390 535 72.9 21.4 

Total 116,228 22,735 28,095 3,106 170,164 - - 
Precision (%) 99.5 55.6 10.6 12.6 - Accuracy (%) 77.4 

Table 21 Damage detection results for test data in the model trained by DATA 5 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 141,185 4,248 2,025 1,867 149,325 94.5 96.9 

LEVEL 1 863 11,820 3,607 151 16,441 71.9 72.2 

LEVEL 2+3 41 229 3,354 239 3,863 86.8 51.6 

LEVEL 4 23 19 153 340 535 63.6 21.7 

Total 142,112 16,316 9,139 2,597 170,164 - - 
Precision (%) 99.3 72.4 36.7 13.1 - Accuracy (%) 92.1 

Table 22 Damage detection results for test data in the model trained by DATA 6 

Automatic classification 
Total Recall (%) 

F-measure
(%)Non-buildings LEVEL 1 LEVEL 2+3 LEVEL 4 

V
isual 

check 

Non-buildings 143,942 4,305 792 286 149,325 96.4 97.9 

LEVEL 1 686 13,649 2,049 57 16,441 83.0 78.4 

LEVEL 2+3 37 407 3,253 166 3,863 84.2 64.3 

LEVEL 4 31 33 162 309 535 57.8 45.7 

Total 144,696 18,394 6,256 818 170,164 - - 
Precision (%) 99.5 74.2 52.0 37.8 - Accuracy (%) 94.7 

4.5 Influence of training data space distribution on damage detection accuracy 

In the previous sections, accuracy was checked using one optional choice from the six kinds of aerial 
photograph used as training data, along with other choices from those used as testing data. The possibility 
of detection accuracy differences due to spatial changes in the combination of these training data cannot 
be ruled out. Therefore, a cross validation was performed by exchanging space distribution of training 
data and testing data based on the aerial photograph frames. 

The cross validation employed a total of 31 frames: 12 frames of aerial photographs with patch 
images identified by method A (Table 8), and 19 images containing five or more training datasets for 
LEVEL 1 to LEVEL 4 obtained from aerial photographs with patch images identified by method B (right 
panels of Figs. 1–6). In these aerial photographs, damage was detected using a 31-hold cross validation 
process in which building patch images from one frame of an aerial photograph were used as testing data, 
and building patch images from 30 other aerial photograph frames were used as training data. Overall, a 
total of 67,893 data items were used, including exchanges of combinations of testing data and training 
data. The overall confusion matrix for these detection results is shown in Table 23. The overall average 

- 101 -



recall was approximately 77.2%, and the average precision was approximately 63.8%. These results show 
that a reasonable level of detection accuracy was obtained. 

Confusion matrices for six kinds of aerial photograph are shown in Tables 24 to 29. Figure 22 shows 
the performance indicators used for these detection results and plots the mean values of all detection 
results. The recall exceeded 60% for every damage level. However, the recall for LEVEL 4 in the 2011 
off the Pacific Coast of Tohoku Earthquake was relatively low at approximately 22.2%. This can be 
attributed to the fact that there were relatively few test data, and that much of the damage was indistinct, 
as described in Section 4.7 below. The precision was low at less than 5% for LEVEL 4 in the 2011 off the 
Pacific Coast of Tohoku Earthquake, and for LEVEL 2+3 and LEVEL 4 in the 2018 Hokkaido Iburi 
Eastern Earthquake. This can be attributed to the fact that there were only 18 to 22 items of test data 
available (Tables 26 and 29), which was several orders of magnitude less than the data for other damage 
levels, and that the precision also decreased as the influence of classification errors in LEVEL 1, which 
included a lot of data, increased compared with the former data. 

The recalls, precisions, and F-measures calculated for the various levels of damage in the other 
earthquakes generally fell within the overall range of the mean value for all earthquakes ±1σ (standard 
deviation). The above findings show that various kinds of aerial photograph can be used to build up a 
damage detection model with an average recall for the various levels of damage of approximately 60% to 
70%, and that the space distribution of training data does not significantly influence the detection accuracy. 

Fig. 22 Comparison of damage detection accuracies for various earthquakes in cross validation of 
aerial photograph frames 

Table 23 Overall ratings in cross validation of aerial photograph frames 

Automatic classification 
Total Recall (%) 

F-measure
(%)LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 42,695 11,253 1,016 54,964 77.7 86.5 

LEVEL 2+3 1,042 8,663 659 10,364 83.6 55.9 

LEVEL 4 57 707 1,801 2,565 70.2 59.6 

Total 43,794 20,623 3,476 67,893 - - 
Precision (%) 97.5 42.0 51.8 - Accuracy (%) 78.3 
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Table 24 Damage detection results in cross validation of aerial photograph frames for the 2016 Kumamoto 
Earthquake (after main shock, Mashiki Town) 

 
 Automatic classification 

Total Recall (%) 
F-measure 

(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 8,699 3,738 137 12,574 69.2 80.4 

LEVEL 2+3 350 4,236 293 4,879 86.8 63.5 

LEVEL 4 17 485 1,217 1,719 70.8 72.3 

Total 9,066 8,459 1,647 19,172 - - 
Precision (%) 96.0 50.1 73.9 - Accuracy (%) 73.8 

 
Table 25 Damage detection results in cross validation of aerial photograph frames for the 1995 Southern 

Hyogo Prefecture Earthquake 
 

 Automatic classification 
Total Recall (%) 

F-measure 
(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 2,078 535 64 2,677 77.6 85.7 

LEVEL 2+3 76 438 61 575 76.2 52.1 

LEVEL 4 18 132 401 551 72.8 74.5 

Total 2,172 1,105 526 3,803 - - 
Precision (%) 95.7 39.6 76.2 - Accuracy (%) 76.7 

 
Table 26 Damage detection results in cross validation of aerial photograph frames for the 2011 off the 

Pacific Coast of Tohoku Earthquake 
 

 Automatic classification 
Total Recall (%) 

F-measure 
(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 20,927 3,019 361 24,307 86.1 91.7 

LEVEL 2+3 385 1,281 44 1,710 74.9 42.6 

LEVEL 4 4 10 4 18 22.2 1.9 

Total 21,316 4,310 409 26,035 - - 
Precision (%) 98.2 29.7 1.0 - Accuracy (%) 85.3 

 
Table 27 Damage detection results in cross validation of aerial photograph frames for the 2016 Kumamoto 

Earthquake (after foreshock, Mashiki Town) 
 

 Automatic classification 
Total Recall (%) 

F-measure 
(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 4,391 2,780 134 7,305 60.1 73.9 

LEVEL 2+3 186 2,500 241 2,927 85.4 60.5 

LEVEL 4 3 61 120 184 65.2 35.3 

Total 4,580 5,341 495 10,416 - - 
Precision (%) 95.9 46.8 24.2 - Accuracy (%) 67.3 
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Table 28 Damage detection results in cross validation of aerial photograph frames for the 2016 Kumamoto 
Earthquake (after main shock, Minami-Aso Village) 

 
 Automatic classification 

Total Recall (%) 
F-measure 

(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 573 111 32 716 80.0 85.6 

LEVEL 2+3 40 192 19 251 76.5 67.3 

LEVEL 4 10 17 45 72 62.5 53.6 

Total 623 320 96 1,039 - - 
Precision (%) 92.0 60.0 46.9 - Accuracy (%) 78.0 

 
Table 29 Damage detection results in cross validation of aerial photograph frames for the 2018 Hokkaido 

Iburi Eastern Earthquake 
 

 Automatic classification 
Total Recall (%) 

F-measure 
(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 6,027 1,070 288 7,385 81.6 89.8 

LEVEL 2+3 5 16 1 22 72.7 2.9 

LEVEL 4 5 2 14 21 66.7 8.6 

Total 6,037 1,088 303 7,428 - - 
Precision (%) 99.8 1.5 4.6 - Accuracy (%) 81.5 

 

4.6 Damage detection results for buildings obtained using the present model 
 
Building damage detection results obtained using the present model and applied to all unlearned areas of 
the aerial photographs used are described below. In the present model, damage is assessed for each 80-
pixel square patch image, which corresponds roughly to the size needed to cover one building. In addition, 
we have developed a program for scanning the entire image in order to repeat damage detection for each 
patch, to automatically determine damage detection results for all areas of aerial photograph images, and 
to output colored images that clearly distinguish different damage levels. The program may also be used 
to superpose images with building polygons in order to automatically determine damage levels for 
individual buildings using the same procedures as those reported in the literature22), 28). Levels of damage 
were rated on an area basis, using a threshold value based on the proportion of the area of each patch 
showing damage in the building polygon. 

This area threshold was set as follows. If any patch showing a high level of damage was contained 
within a building polygon, it was considered a damaged portion and that building was identified as 
severely damaged, with priority given to identifying the higher levels of damage, overall. Based on these 
criteria, the area threshold for each damage level was set between 1% and 80%, and then used to maximize 
the average recall for the detection results with the six kinds of aerial photograph used for testing. 
Specifically, when LEVEL 4 patches were present in 1% or more of the building polygon, the rating given 
was LEVEL 4. When LEVEL 3 patches were present in 10% or more, the rating was LEVEL 3. When 
LEVEL 2 patches were present in 40% or more, the rating was LEVEL 2. In all other cases, the rating 
was set at LEVEL 1. 

In this study, training data from six kinds of aerial photograph (Table 10) were used for training with 
the present model, after which this approach was also applied to the six aerial photographs used for testing 
(Figs. 1–6). In the case of the 1995 Southern Hyogo Prefecture Earthquake, we used building polygons 
that we had prepared ourselves during the preparation of training data based on aerial photographs. In 
other cases, building polygons taken from the Japan Basic Map Information database24) were used. 

Figures. 23 and 24 show detection results for the entire image and automatic damage detection results 
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for buildings, obtained from the training data derived from six kinds of aerial photograph (Table 10) using 
the present model, and then applied to the six aerial photographs used for testing (Figs. 1–6). The first row 
in Fig. 23 shows the results for the main shock of the 2016 Kumamoto Earthquake (Mashiki Town); the 
second row shows the results for the 1995 Southern Hyogo Prefecture Earthquake; and the third row 
shows the results for the 2011 off the Pacific Coast of Tohoku Earthquake. The first line shows one of the 
aerial photographs used with a scale added. The second line shows an image with the various building 
polygons distinguished by color on the basis of the results of a visual check of the aerial photographs. The 
third line shows damage detection results for the entire image area. The fourth line shows an overlay of 
damage detection results for the entire image area on an aerial photograph at a transmittance of 50%. The 
fifth line shows damage detection results for buildings based on an overlay on a building polygon. The 
sixth line shows an overlay of damage detection results for buildings on an aerial photograph at a 
transmittance of 50%. In Fig. 24, the first row shows damage detection results obtained after the foreshock 
of the 2016 Kumamoto Earthquake (Mashiki Town); the second row shows results obtained after the main 
shock of the 2016 Kumamoto Earthquake (Minami-Aso Village); and the third row shows the results 
obtained for the 2018 Hokkaido Iburi Eastern Earthquake. The order in which the images have been 
arranged in line is the same as in Fig. 23. 

When comparing damage detection results for buildings in Figs. 23 and 24 (fifth line) with visual 
check results (second line), it can be seen in terms of qualitative nature that the overall damage levels and 
the distributions of severely affected areas derived from each aerial photograph could be easily understood 
and did not differ markedly from the visual check results. 

Next, damage detection results for buildings in each aerial photograph used for testing were 
compared with visual check results. The resulting overall confusion matrix is shown in Table 30. It can 
be seen that the overall average recall was approximately 70.2%, and average precision was 
approximately 64.3%. These results represent a reasonable level of detection accuracy. 

Figure. 25 shows recall, precision and F-measure results for various aerial photographs used for 
testing, and the mean and standard deviation data for various rating indicators used for the six earthquakes 
examined. Recall results for LEVEL 2+3 in the 2018 Hokkaido Iburi Eastern Earthquake and LEVEL 4 
in the 2011 off the Pacific Coast of Tohoku Earthquake were each under one standard deviation of -1σ. In 
terms of precision, LEVEL 2+3 in the 2018 Hokkaido Iburi Eastern Earthquake and LEVEL 4 in the 2011 
off the Pacific Coast of Tohoku Earthquake were each under one standard deviation of −1σ. The possible 
causes of these reductions in damage detection accuracy are discussed further in Section 4.7. 

Regarding processing time, the learning stage for building each damage detection model took 
approximately 9 hours. However, when using a fully developed model, all the images shown in Figs. 23 

and 24 could be finalized within 10 minutes for each individual aerial photograph. In contrast, performing 
visual checks could take several days, depending on the number of buildings in the image25). Therefore, 
in terms of processing time, this model can be considered effective in the simultaneous detection of 
damage states. 
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Fig. 23 Automatic damage detection results (1) obtained by applying the present model to unlearned 

aerial photographs 
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Fig. 24 Automatic damage detection results (2) obtained by applying the present model to unlearned 

aerial photographs 
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Fig. 25 Damage detection accuracy for buildings in aerial photographs used for testing 
 

Table 30 Damage detection results for buildings (overall data) 
 

 Automatic classification 
Total Recall (%) 

F-measure 
(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 4,272 938 85 5,295 80.7 85.2 
LEVEL 2+3 394 1,581 172 2,147 73.6 66.7 

LEVEL 4 65 78 185 328 56.4 48.1 
Total 4,731 2,597 442 7,770 - - 

Precision (%) 90.3 60.9 41.9 - Accuracy (%) 77.7 
 

4.7 Characterization of damage detection results by earthquake 
 
Damage detection results obtained when using aerial photographs for the tests mentioned in Section 4.6 
were systematically analyzed, item by item, and the influences of seismic motions, building type, and 
other conditions on the detection accuracy of the present model were examined. In most cases, building 
types and the proportion of tile-roofed houses in each aerial photograph used for testing were estimated, 
mainly by visual checking. However, for the 2016 Kumamoto Earthquake, data obtained from a building 
damage information database35) found in a reference search were used instead. 

The aerial photographs of the 2016 Kumamoto Earthquake (after main shock, Mashiki Town) that 
were used for testing were acquired in a region close to an inland earthquake fault where major seismic 
motions are known to have occurred. More than 90% of the buildings in this region were made of wood, 
and approximately 90% also had tiled roofs. Figure 26 shows a magnified view of such houses. Likewise, 
when seen from above, the damage features detected were visually distinct. Table 31 shows the confusion 
matrix for damage detection results in this region. The average recall was approximately 62.0% and the 
average precision was approximately 61.8%—reflecting a good balance in terms of results. As described 
above, the damage features were quite distinct and the availability of many similar features in the training 
data contributed to the relatively high recall and precision values obtained when assessing the various 
levels of damage in this region. 

 
  

- 108 -



 
 

 

Table 31 Damage detection results for buildings affected by the 2016 Kumamoto Earthquake (after 
main shock, Mashiki Town) 

 
 Automatic classification 

Total Recall (%) 
F-measure 

(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 239 47 20 306 78.1 70.0 
LEVEL 2+3 101 139 56 296 47.0 54.8 

LEVEL 4 37 25 97 159 61.0 58.4 
Total 377 211 173 761 - - 

Precision (%) 63.4 65.9 56.1 - Accuracy (%) 62.1 
 

Visual check 

 

Damage detection result 

 

Detection result for building 

 

 
Fig. 26 Magnified view of damage detection results for the 2016 Kumamoto Earthquake (after main 

shock, Mashiki Town) 
 

Aerial photographs of the 1995 Southern Hyogo Prefecture Earthquake used for testing targeted 
regions where strong seismic motions were caused by an inland fault. Approximately 80% of the buildings 
in this region were made of wood and approximately 90% had tiled roofs. The type of damage to these 
wooden buildings was usually quite distinct, including some cases of complete collapse. However, 
because the aerial photograph shown was taken on the same day as the earthquake, blue-tarp-covered 
buildings have yet to appear. Since the visual rating criteria used for LEVEL 2+3 included blue-tarp 
coverage, this might have contributed to the lower recall value observed for LEVEL 2+3. Looking at the 
confusion matrix, the average recall was approximately 59.5% and the average precision was 
approximately 58.8%. The proportion of LEVEL 2+3 was estimated to be slightly lower than the actual 
figure obtained from visual checking, and the proportion of LEVEL 4 was estimated to be slightly higher. 
The precision value for LEVEL 4 was also lower (Table 32). This can be explained as follows. In the 
target region, buildings were close to each other, as shown in Fig. 27. Therefore, some patches of adjoining 
buildings classified as LEVEL 4 were contained in the building polygons visually classified as LEVEL 1 
and LEVEL 2+3, resulting in the LEVEL 4 rating. The target region also contained medium- to low-
storied buildings, often constructed with reinforced concrete or steel. These structures accounted for 
approximately 20% of all buildings there. Even when visual checking from the air found no obvious signs 
of damage, structures such as pillars, beams and walls might actually have been damaged or weakened. 
Such damage to non-wooden buildings can be difficult to detect merely by observing from above. With 
this in mind, the present study focused mainly on detecting damage to wooden houses. As with all the 
other earthquakes examined, damage detection accuracy tended to decrease for non-wooden buildings. 
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Table 32 Damage detection results for buildings affected by the 1995 Southern Hyogo Prefecture 
Earthquake 

Automatic classification 
Total Recall (%) 

F-measure
(%)LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 75 11 31 117 64.1 67.0 

LEVEL 2+3 25 30 29 84 35.7 46.9 

LEVEL 4 7 3 37 47 78.7 51.4 

Total 107 44 97 248 - - 
Precision (%) 70.1 68.2 38.1 - Accuracy (%) 57.3 

Visual check Damage detection result Detection result for building 

Fig. 27 Magnified view of damage detection results for the 1995 Southern Hyogo Prefecture Earthquake 

The aerial photographs of the 2011 off the Pacific Coast of Tohoku Earthquake used for testing 
targeted regions where relatively large seismic motions were caused by a subduction-zone earthquake. 
Approximately 90% of the buildings in this region were made of wood, with tile-roofed buildings only 
accounting for approximately 20% of the total. When the proportion of tile-roofed buildings is this low, 
visual checking may overlook relatively low levels of damage28). Table 33 shows the confusion matrix for 
damage detection results in such a case. The average recall was approximately 52.5% and the average 
precision was approximately 52.1%, with no buildings identified as LEVEL 4. The fact that no LEVEL 4 
damage was detected in the 2011 off the Pacific Coast of Tohoku Earthquake is probably due to the lack 
of any distinct features in the test data used for the LEVEL 4 rating. For example, even though two 
buildings near the center of the left panel in Fig. 28 were visually classified as LEVEL 4, both were 
automatically classified as LEVEL 3. Although these buildings were estimated to have been significantly 
damaged, they lacked any distinctive features indicating complete collapse, and there was probably also 
some variation among different assessors when classifying damaged buildings as LEVEL 3 or LEVEL 4. 
In the 2011 off the Pacific Coast of Tohoku Earthquake, only a few wooden houses actually collapsed 
around the quake intensity observation points because seismic motions in frequency zones highly 
correlated with building damage were absent in almost all regions36). Hence, there can be significant 
differences in seismic motion characteristics and frequency zones between inland active fault earthquakes 
like the 2016 Kumamoto Earthquake and subduction-zone earthquakes like the 2011 off the Pacific Coast 
of Tohoku Earthquake, which can in turn cause variable building damage modes and adversely affect the 
accuracy of any automatic damage detection systems. 
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Table 33 Damage detection results for buildings affected by the 2011 off the Pacific Coast of Tohoku 
Earthquake 

 
 Automatic classification 

Total Recall (%) 
F-measure 

(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 1,276 152 0 1,428 89.4 89.4 

LEVEL 2+3 151 322 0 473 68.1 67.5 

LEVEL 4 1 7 0 8 0.0 0.0 

Total 1,428 481 0 1,909 - - 

Precision (%) 89.4 66.9 0.0 - Accuracy (%) 83.7 
 

Visual check 

 

Damage detection result 

 

Detection result for building 

 

 
Fig. 28 Magnified view of damage detection results for the 2011 off the Pacific Coast of Tohoku 

Earthquake 
 

Aerial photographs of the 2016 Kumamoto Earthquake (after foreshock) used for testing were taken 
in a region close to an inland earthquake fault where large seismic motions occurred. Approximately 80% 
of the buildings in this region were made of wood, with tile-roofed buildings also accounting for 
approximately 80%. Hence, the damage features in the various categories observed were quite distinct. 
Table 34 shows the confusion matrix for the detection results. The average recall was approximately 
66.1% and the average precision was approximately 59.7%. As with the results obtained after the main 
shock of the 2016 Kumamoto Earthquake, the estimates of the various damage classes were quite evenly 
balanced. However, LEVEL 1 was slightly underestimated and LEVEL 2+3 and LEVEL 4 were slightly 
overestimated, compared with the visual check results (Table 34). In the magnified view of the three 
buildings marked with a green inverted triangle, as shown in Fig. 29, buildings for which the damage level 
could not be characterized by visual checking were sometimes automatically classified as LEVEL 2+3. 
This is attributable to the fact that some patches showing LEVEL 2+3 damage around the buildings in 
this region were contained in the building polygons when the buildings were close to each other, and 
because the same range of images obtained after the main shock of the 2016 Kumamoto Earthquake was 
also used as training data. The lower precision for LEVEL 4 is attributable to the fact that there were 
significantly fewer data items available compared with LEVEL 1 and LEVEL 2+3, so the influence of 
classification errors at LEVEL 4 increased accordingly. 
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Table 34 Damage detection results for buildings affected by the 2016 Kumamoto Earthquake (after 
foreshock, Mashiki Town) 

Automatic classification 
Total Recall (%) 

F-measure
(%)LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 1,167 708 34 1,909 61.1 73.6 

LEVEL 2+3 93 1,073 87 1,253 85.6 69.8 

LEVEL 4 4 40 47 91 51.6 36.3 

Total 1,264 1,821 168 3,253 - - 
Precision (%) 92.3 58.9 28.0 - Accuracy (%) 70.3 

Visual check Damage detection result Detection result for building 

Fig. 29 Magnified view of damage detection results for the 2016 Kumamoto Earthquake (after 
foreshock, Mashiki Town) 

Aerial photographs of the 2016 Kumamoto Earthquake (after main shock, Minami-Aso Village) used 
for testing were taken in a region where large seismic motions occurred due to the presence of an active 
fault. In addition, approximately 70% of the buildings in this region were made of wood, with tile-roofed 
buildings accounting for approximately 60% of the total. Hence, the damage features in the various 
categories were relatively distinct. As shown by the confusion matrix of ratings in Table 35, the average 
recall was approximately 55.0% and the average precision was approximately 79.0%. The proportion of 
LEVEL 4 damage was estimated to be slightly lower than the figure obtained by visual checking (Table 
35). In this region, as shown in the left panel in Fig. 30, the number of building polygons was smaller than 
the number of actual buildings and the various locations and shapes also showed marked discrepancies. 
These discrepancies may have affected the detection accuracy for building damage levels. Likewise, the 
accuracy of building polygons in the Japan Basic Map Information dataset24) can be lower in non-urban 
regions25). This polygon discrepancy also affected the automatic identification of training data, but any 
mis-identified data caused by this discrepancy were removed by visual screening to prevent any loss of 
quality in the training data used in the damage detection model (Section 2.3). With the present test data, 
the recall for LEVEL 4 was low, overall, at only 21.4%. The patch-based cross validation described in 
Section 4.6 showed that the recall value for LEVEL 4 was approximately 62.5% (Table 28), which was 
higher than the accuracy of building-based cross validation. Therefore, the loss of accuracy was probably 
due to the unsuccessful classification by threshold in cases where the extracted damaged portion was 
located outside the building polygon due to polygon shift, rather than to the damage detection model used. 
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Table 35 Damage detection results for buildings affected by the 2016 Kumamoto Earthquake (after 
main shock, Minami-Aso Village) 

Automatic classification 
Total Recall (%) 

F-measure
(%)LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 56 5 0 61 91.8 80.6 

LEVEL 2+3 14 15 0 29 51.7 57.7 

LEVEL 4 8 3 3 14 21.4 35.3 

Total 78 23 3 104 - - 
Precision (%) 71.8 65.2 100.0 - Accuracy (%) 71.2 

Visual check Damage detection result Detection result for building 

Fig. 30 Damage detection results for the 2016 Kumamoto Earthquake (after main shock, Minami-Aso 
Village) 

Aerial photographs of the 2018 Hokkaido Iburi Eastern Earthquake used for testing were taken in a 
region where relatively large seismic motions were caused by an inland earthquake. In addition, 
approximately 90% of the buildings in this region were made of wood, with almost no tile-roofed houses. 
Aerial photograph ratings showed that most buildings were undamaged so, in most cases, damage features 
for each level were not distinct. As shown by the confusion matrix for ratings in Table 36, the average 
recall was approximately 42.3% and the average precision was approximately 70.2%. The proportion of 
LEVEL 4 damage was estimated to be slightly lower than that found by visual checking, but the proportion 
of LEVEL 2+3 was estimated to be slightly higher (Table 36). These low recall values for LEVEL 2+3 
and LEVEL 4 can be attributed to the characteristic regional features reflected in local building shapes. 
The red-roofed building in the center of the left panel of Fig. 31, for example, was rated as LEVEL 4 
because visual checking showed a distinct inclination, whereas the present model rated it as LEVEL 1 
after automatic classification. Prior studies have shown that wooden houses in the Hokkaido region have 
a large amount of insulation because of their specifications, which require them to be able to withstand 
the snow and cold, with the proportion of houses incorporating bearing walls being higher than that in 
Honshu. Hence, proportion of houses with high quake resistance is higher37). Also, the proportion of tile-
roofed houses is lower there than in other prefectures38) and the wooden houses in Hokkaido are often 
markedly different, structurally, from those found in Honshu. Furthermore, images of LEVEL 2 or higher 
damage for the 2018 Hokkaido Iburi Eastern Earthquake accounted for only a small proportion of the 
training data constructed for the present study (Table 9). Hence, these low recall values could have been 
due to the inability of the system used to learn damage features properly. The precision for LEVEL 2+3 
was also lower as a result of the relatively large influence of the mis-rating of visual check results for 
LEVEL 1 and other levels of damage because the number of buildings in LEVEL 2 and higher was much 
smaller than the number of buildings in LEVEL 1. 
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Table 36 Damage detection results for buildings affected by the 2018 Hokkaido Iburi Eastern Earthquake 

 
 Automatic classification 

Total Recall (%) 
F-measure 

(%) LEVEL 1 LEVEL 2+3 LEVEL 4 

Visual 
check 

LEVEL 1 1,459 15 0 1,474 99.0 98.9 

LEVEL 2+3 10 2 0 12 16.7 13.8 

LEVEL 4 8 0 1 9 11.1 20.0 

Total 1,477 17 1 1,495 - - 
Precision (%) 98.8 11.8 100.0 - Accuracy (%) 97.8 

 
 

Visual check 

 

Damage detection result 

 

Detection result for building 

 
 

Fig. 31 Damage detection results for the 2018 Hokkaido Iburi Eastern Earthquake 
 

 

5. CONCLUSION AND FUTURE ISSUES 
 
Using six kinds of vertical aerial photographs taken under different imaging conditions just after the onset 
of the 1995 Southern Hyogo Prefecture Earthquake, the 2011 off the Pacific Coast of Tohoku Earthquake, 
the foreshock and main shock of the 2016 Kumamoto Earthquake, and the 2018 Hokkaido Iburi Eastern 
Earthquake, we constructed a large building damage training dataset. The accuracy of the constructed 
training data was then checked by comparison with field survey results from Mashiki Town, obtained 
after the main shock of the 2016 Kumamoto Earthquake. The average recall value with three levels of 
building damage (no damage, partial to half collapse, complete collapse) was determined to be 
approximately 74%, showing that visual checking of vertical aerial photographs is sufficiently accurate 
to reliably assess the damage status within these three damage levels. 

We also developed a model for automatically classifying damage by applying deep learning to the 
same training data, and confirmed its higher rating performance compared with other models reported in 
previous studies. Furthermore, we found that developing a highly robust model by means of data 
augmentation, etc., using a large dataset comprising a wide variety of images as learning data, is a useful 
way of increasing generalization performance. 

Using the model and dataset developed in the present study, we performed frame-by-frame cross 
validation using six kinds of aerial photograph to obtain training data and test data from several different 
places, and found that the detection performance with the three damage levels produced an average recall 
value of approximately 77%. We also found, using untrained aerial photographs for testing, that ratings 
could be determined with an average recall accuracy of approximately 70% for all three damage levels 
for all buildings shown in the image. 

Rating results were also analyzed for characterization, and some specific issues were identified. First, 
the training dataset constructed did not include enough data on LEVEL 4 damage caused by subduction-
zone earthquakes and LEVEL 2 or higher damage in cold regions like Hokkaido. This resulted in 
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decreased detection accuracy for such damage. In addition, while the aerial photographs used for testing 
targeted regions with a high proportion of wooden houses, houses made of reinforced concrete (RC) or 
steel-framed (S) structures and low- and medium-storied buildings could show different forms of damage 
that were not always evident from their external appearance39). Likewise, many high-storied buildings 
could not be adequately assessed merely from their appearance. Therefore, the present study was short of 
training data covering damage to these non-wooden buildings. Furthermore, wooden but tile-roofed 
buildings accounted for only a small proportion of housing in the Hokkaido and Tohoku districts38) – 
which could have affected the damage detection accuracy of the present model. Hence, we would like to 
develop improved technology for assessing earthquake damage more accurately by continuing to collect 
images of damage from both inside and outside Japan in order to enhance our training data. We would 
also like to make the best possible use of additional sources of data, other than just vertical aerial 
photographs. 

We also identified the impacts that the resolution of the building polygons used and the building 
density and other local factors could have on detection accuracy. As a result of these findings, several 
techniques for the automatic identification of building boundaries by means of image recognition using 
aerial photographs40), 41) have now been proposed, and various technologies for the automatic 
identification of objects of any size from images42), 43) have been developed. In the future, we would like 
to further investigate any technique capable of building damage detection in those cases where highly 
accurate polygon data cannot be obtained using such technologies. 

Moreover, in the present study, we developed a model capable of automatically detecting building 
damage at a reasonable level using six kinds of aerial photograph. If this model is to be applied to new 
disasters in the future, its accuracy is likely to be insufficient, depending on the presence of damage 
features related to seismic motions, architectural structures and other factors. However, the detection 
accuracy is expected to be increased by streamlining the training process with the use of techniques such 
as transfer learning44) which would allow the weighting information constructed in the present study to be 
used for the next learning stage. In this study, the training time required was up to about 9 hours for the 
2000 epochs of training performed in Section 4.4, and about 1 to 3 hours per training attempt for the 500 
epochs of cross validation performed in Section 4.5. We found, however, that calculation time can be 
shortened by finishing the calculation in fewer attempts with the use of transfer learning. We are, therefore, 
planning to carry out a detailed verification of the effectiveness of transfer learning techniques. 

In addition, while the present study exclusively targeted aerial photographs taken from fixed-wing 
aircraft, aerial photographs cannot always be acquired over the entire range required just after the onset 
of a disaster. Furthermore, aerial photographs taken solely in the vertical plane can sometimes overlook 
the buckling of pillars, beams, and other structural members of buildings, as well as wall damage. For this 
reason, it is desirable for any detailed damage classification to also include images taken using artificial 
satellites, helicopters, UAVs, etc., and that these be used in combination with existing aerial photographs. 
Using LiDAR, stereoscopic images, and other sources of data in combination, we can detect building 
height changes before and after an earthquake. In future, we would like to develop a building damage 
detection model with improved accuracy by using images taken from all these different kinds of platform 
sensors, three-dimensional models, and other approaches used in combination. 

Finally, we would like to systematically work towards making the best possible use of the model 
developed in the present study to support disaster responses, in collaboration with various other 
organizations, by identifying any issues that may arise and continuing to develop and apply this system 
to help society recover from any future disasters. 
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