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ABSTRACT: A study on tsunami inversion analysis was conducted using Lasso 
regression, which is a typical approach to sparse modeling. Characteristics of 
spatiotemporal distribution of the fault slips were then analyzed. Sparse modeling is 
characterized by yielding obtained solutions that contribute significantly to the output of 
the model. This feature is useful for investigating the development of prediction models. 
This paper applies a tsunami inversion analysis based on sparse modeling to the 2011 
Tohoku Earthquake Tsunami and analyzes the characteristics of the fault slips. 
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1. INTRODUCTION 
 
To understand the characteristics of a tsunami caused by an earthquake, it is important to understand 
what kind of fault movement occurred at the hypocenter. Tsunami inversion refers to the process of 
estimating the slip displacement of earthquake source faults from the traces of the tsunami left in the 
coastal areas, as well as the tidal records. Analyzing the fault slip model estimated using tsunami 
inversion and understanding its features can produce important information for future prediction 
problems necessary for tsunami resistant design. In the 2011 Tohoku Earthquake Tsunami, since a 
large number of observation records were obtained, highly accurate source fault models can be 
obtained by tsunami inversion1). 

On the other hand, a method called sparse modeling is used in the field of machine learning to 
construct mathematical models from various big data such as medical service and life logs2). It is also 
used in the field of image processing for compression and decompression3). Sparse means not dense, 
and sparse modeling (or sparse estimation) is a modeling method that uses the property assumes that 
most regression coefficients are zero. The advantage of sparse modeling is that model selection can be 
performed simultaneously with regression, since the regression coefficients of low-contributing 
parameters for the output of the target mathematical model are automatically zero. These advantages 
are also useful properties in tsunami inversion. Thus, applying sparse modeling to tsunami inversion is 
considered significant. It is important to model the construction of physical models that explain natural 
phenomena using as few parameters as possible. The idea here is that the resulting model will be better 
able to be used for predictive purposes4). 

It is thought that applying the method of sparse modeling to the problem of tsunami inversion will 
make some level of predictive analysis possible. Therefore, in this study, tsunami inversion was 
conducted using Lasso regression, which is a typical form of sparse modeling, and analyzed the 
characteristics of the spatiotemporal distribution of slips in earthquake source faults are analyzed. The 
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purpose of this study is to propose a method for efficiently understanding the fault motion that affects 
the tsunami. To solve such problems, if we use sensitivity analysis to examine the impact on the 
tsunami exerted by each spatiotemporal slip constituting the fault motion, it becomes possible to 
search for a combination of spatiotemporal slips that have a large impact on the tsunami. However, if 
the fault model is complicated and the degree of freedom is large, much work and time will be 
required. Sparse modeling, by contrast, is advantageous insofar as it allows for the automatic 
extraction of those parameters that have a large impact on the tsunami. 
 
 
2. APPLICATION OF SPARSE MODELING TO TSUNAMI INVERSION 
 
This paper presents two approaches to tsunami inversion: the conventional approach and sparse 
modeling approach, and uses a comparison of these two to demonstrate the applicability and 
usefulness of sparse modeling approach.  
 
2.1 Conventional Tsunami Inversion 
 
This study examines the problem of finding the slip displacements of the fault using the same 
formulation as Kurita5). It is assumed that the fault plane is comprised of multiple subfaults separated 
in a grid. Here, tsunami inversion is formulated in vector notation for unknown quantities and 
observable quantities, and is defined as follows: 

1
⋅ means L1 norm (

1 k
k

z= ∑z ), 
2
⋅ means L2 

norm ( 2
2 k

k
z= ∑z ). 

In the conventional inversion problem, the solution is obtained by the nonnegative least squares 
method as follows. The reason for adding the nonnegative condition to the least squares method is that 
without it, the formula could result in a negative slip result. A negative slip would indicate that 
movement occurred in the opposite direction to the slip direction, and would be unnatural. Hence, the 
nonnegative condition is added. 
 

2

2
min ⋅ −G X Y   subject to ≥X 0      (1) 

 

where G : Green’s function matrix, X : fault slip vector, Y : observation vector. The observed 
quantities are crustal deformation (permanent displacement) and tsunami water level time history. 

The multi-time window model8) was used as the slip model of the earthquake source fault, as was 
done in previous studies5). This method adds the Green’s functions, taking into consideration the 
rupture time and the time delay of the time window, when performing the linear tsunami analysis. It 
was assumed that the rupture propagation proceeded concentrically from the hypocenter position as 
determined by the Japan Meteorological Agency. In this study, the constraint condition of smoothing is 
not provided to suppress the difference between adjacent spatiotemporal slips. 
 
2.2 Formulation of Sparse Modeling 
 
To perform sparse modeling, a Lasso (Least absolute shrinkage and selection operator) type7) 
evaluation function in which the unknown parameters are L1 regularized is applied as follows: 
 

2

2 1
min λ⋅ − +G X Y X        (2) 

 
where λ  is the regularization parameter ( )0λ ≥ . The L1 regularization case is called Lasso 
regression, as shown in equation (2), and the L2 regularization case formulated with the square of 
unknown parameters is called Ridge regression. Regularization is a method used to prevent overfitting 
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to observed data. 
In the case of L2 regularization such as Ridge regression, the estimated value can be obtained by 

partially differentiating the evaluation function to be minimized with unknown parameters, but in the 
case of L1 regularization, partial differentiation by unknown parameters is not possible. Therefore, the 
solution can be obtained using algorithms such as CD (Coordinate Descent)8), 9) or ADMM (Alternate 
Direction Method of Multipliers)10). In both methods, the optimal solution is obtained by iterative 
calculation while controlling the value of the unknown parameter with the soft-thresholding function 
as shown in Eq. (3). The image of the soft-thresholding function is shown in Fig. 1. 
 

( )
( )
( )
( )

, 0

x x

S x x

x x

λ λ

λ λ

λ λ

 − >
= ≤
 + < −

      (3) 

 
In the algorithm for Lasso regression, the solution is obtained by sequentially correcting the 

estimated values of the unknown parameters. In the sequential calculation, a soft-thresholding function 
is applied to new candidate values in the step of updating the unknown parameters of the model to fit 
the observed data. At this time, the role of the soft-thresholding function is as follows: output is 
replaced by zero if the input value falls under the threshold, and if the input value exceeds the 
threshold, the original value reduced by the threshold amount is output. The above operation is 
repeated until the solution converges. 

In sparse modeling in tsunami inversion obtained by the above formulation, the slip displacement 
of a subfault with a small contribution to the model output is determined to be zero. That is, the 
subfault where the slip displacement is zero has been deemed to be unnecessary in modeling. 

As an example, Fig. 2 shows the Lasso type sparse solutions using the soft-thresholding function 
of Eq. (3). Here, the number of time windows is one. From the figure, negative values can be seen as 
the slip displacements. This means that slippage in the reverse direction to the slip direction has 
occurred, and it is not appropriate as a fault model. Thus, in this study, the soft-thresholding function 
like the following equation so that the negative slip does not occur is proposed. This function behaves 
as shown in ( )' ,S x λ  in Fig. 1. 
 

( ) ( )
( )

' ,
0

x x
S x

x
λ λ

λ
λ

 − >=  ≤
      (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Soft-thresholding function 
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Fig. 2 Final fault slip distribution obtained using a conventional soft-thresholding operator 
 
 
3. TSUNAMI INVERSION RESULT USING LASSO REGRESSION 
 
3.1 Sparse Solution of Fault Slip 
 
In this study, sparse modeling was applied to tsunami inversion analysis for the 2011 Tohoku 
Earthquake Tsunami. The analysis conditions for performing inversion were set as follows based on 
previous studies5). The rupture velocity was 2.5 km/s, the number of time windows was 5, and the 
length of one time window was 30 seconds. The earthquake source fault is comprised of subfault 
blocks divided into 147. The number of unknowns is the number of subfault blocks (147 blocks) × 
number of time windows (5 windows) = 735. The data of crustal deformation (permanent 
displacement) and tsunami water level time history published by various organizations11)-16) were used 
as observations. As observations, 395 sites × 3 components are used as crustal deformation (permanent 
displacement), and tsunami water level time history data is used in total of 14,522 steps at 40 sites. 
The duration of the tsunami water level time history to be used was from the beginning of the rupture 
to the first direct wave at each observation site. 

Lasso regression was performed by changing the value of the regularization parameter (λ) using 
the soft-thresholding function of Eq. (4). The final fault slip distribution estimated by Lasso under 
nonnegative conditions is shown in Fig. 3. In the case of λ = 1.0 × 10-2, a result with no slip was 
obtained. Also, it agrees with the result obtained by the least squares method of ordinary nonnegative 
condition at λ = 1.0 × 10-8 or less. It can be seen that the final slip displacements of the source fault 
increase as the regularization parameter decreases. 

In the case of λ = 1.0 × 10-3, where the value of the regularization parameter is the largest among 
the calculation cases in which the solution of slip distribution is obtained, the slips are distributed only 
in a relatively deep region slightly north of the rupture starting point. As the value of the regularization 
parameter decreases, the subfault blocks where the slip occur are expanding. In particular, slipping 
along the trench axis tends not to appear unless the value of the regularization parameter is small 
enough. 

When the value of the regularization parameter is changed, the change process of the residual sum 
of squares between observed data and calculated values from Lasso estimation and the number of 
nonzero parameters is shown in Fig. 4. This shows that the residual sum of squares increases as the 
value of the regularization parameter increases. Also, the number of nonzero parameters decreases 
accordingly.  

Conventional Lasso (Vr=2.5km/s, TW=1) λ=1.0×10-4 

slip displacement 
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(1) λ=1.0×10-2             (2) λ=1.0×10-3 

 
(3) λ=1.0×10-4             (4) λ=1.0×10-5 

Fig. 3 Final fault slip distribution estimated by Lasso under nonnegative conditions (1) 
 
 
 
 

Next, the estimation models were evaluated according to AICLasso
λ

17). Here, the parameters of the 
model are the active set of unknowns X . Figure 5 shows the relationship between the values of the 
regularization parameters and AICLasso

λ . In addition, since two different physical quantities of crustal 
deformation (permanent displacement) and tsunami water level time history are used as observation 
quantities, AICLasso

λ  is calculated for each observation data. The figure shows that the estimation 
result when the regularization parameter is small (λ = 1.0 × 10-8 or less) is more appropriate in the 
evaluation result by AICLasso

λ . 

Nonnegative Lasso (Vr=2.5km/s, TW=5) 

slip displacement 

Nonnegative Lasso (Vr=2.5km/s, TW=5) 

Nonnegative Lasso (Vr=2.5km/s, TW=5) Nonnegative Lasso (Vr=2.5km/s, TW=5) 

slip displacement 

slip displacement slip displacement 
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(5) λ=1.0×10-6             (6) λ=1.0×10-7 

 
(7) λ=1.0×10-8             (8) λ=1.0×10-9 

Fig. 3 Final fault slip distribution estimated by Lasso under nonnegative conditions (2) 
 
 
3.2 Solution Path of Fault Slip 
 
Although Fig. 3 shows the values of the regularization parameters and the final fault slip 
displacements, in this study, since the multi-time window is used as the source slip model, it is 
necessary to regard the Lasso estimated value as the spatiotemporal distributions. Figure 6 shows the 
Lasso regression estimate of the time change of the slip at each subfault block. If the value of the 
regularization parameter decreases by a certain degree or more, subfault blocks with large slippage are 
almost the same in the end, even if the regularization value changes. For example, in Fig. 6 (2) and (3), 
subfault blocks No. 12 to No. 14, No. 39 to 40, and No. 66 to 68 share the final slip displacements of 
more than 25 m. However, when looking at all faults, the temporal variations of the slip displacements 
change depending on the value of the regularization parameter. 

Nonnegative Lasso (Vr=2.5km/s, TW=5) 

slip displacement 

Nonnegative Lasso (Vr=2.5km/s, TW=5) 

Nonnegative Lasso (Vr=2.5km/s, TW=5) Nonnegative Lasso (Vr=2.5km/s, TW=5) 

slip displacement 

slip displacement slip displacement 
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Fig. 4 Relationships between the variation of λ and the residual sum of squares,  
also between the variation of λ and the number of nonzero parameters 

 

 
(1) AICLasso

λ  on crustal deformation      (2) AICLasso
λ  on tsunami water level time history 

(permanent displacement) 
Fig. 5 Relation between changing λ and AICLasso

λ  
 
 

The solution path was obtained to investigate the state of the spatiotemporal change of the Lasso 
regression estimated value by the value of the regularization parameter. Figure 7 shows the solution 
path of the fault slip using Lasso regression for each time window. Here, we focus on 5 subfault blocks 
with a relatively large slip. The figure shows that the slip displacements change depending on the 
value of the regularization parameter even in the same fault block, in the same time window. It is also 
understood that the magnitude relation of the slip displacement with other blocks may be replaced 
with one another. In particular, block No. 092 of time window: 1 and block No. 121 of time window: 3 
are drastically changed by the value of the regularization parameter. This phenomenon can also be 
confirmed by the time changing of slip displacements of the subfault block in Fig. 6. For block No. 
092 (solid frame in the figure), the time functions of the slip are drastically different between λ = 1.0 × 
10-3 and λ = 1.0 × 10-8. Similarly, for block No. 121 (broken line frame in the figure), the time 
functions of the slip at λ = 1.0 × 10-4 and at λ = 1.0 × 10-8 are vastly different. Slipping the fault in the 
temporally backward time window and slipping the spatially distant fault block has the same effect on 
the tsunami water level at the observation point. By setting the regularization parameters, places 
appear where the amount of slip fluctuates, as described above. 

As mentioned above, although sparse modeling can obtain the subfault blocks with a large impact 
on the tsunami waveform, the degree of impact may change depending on the value of the 
regularization parameter, so it should be carefully monitored. It is therefore important to confirm the 
fluctuation of solution by solution path.  
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(1) λ=1.0×10-3 

Fig. 6 Lasso regression estimate of slip block time change of fault block (1)  
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(2) λ=1.0×10-4 

Fig. 6 Lasso regression estimate of slip block time change of fault block (2)  
E 

N 
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(3) λ=1.0×10-8 

Fig. 6 Lasso regression estimate of slip block time change of fault block (3)  
E 

N 
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      (1) Time window (TW) : 1          (4) Time window (TW) : 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
      (2) Time window (TW) : 2          (5) Time window (TW) : 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
      (3) Time window (TW) : 3          (6) Fault block for solution path 

Fig. 7 Solution path of fault slip by Lasso regression 
 
 
 
4. DISCUSSION 
 
Using the source fault model obtained using sparse modeling, the reproducibility of the time history 
waveform of the tsunami water level was analyzed. The following discussion of the important factors 
in constructing a prediction model for earthquake faults will focus on this reproducibility. In addition, 
although the crustal movement (permanent displacement) and the tsunami water level time history are 
used as observation data in the tsunami inversion of this study, focus is placed on the time history of 
tsunami water level since the tsunami water level is more important in the prediction problem in 
tsunami-resistant design. The observation points of the tsunami water level time history used here are 
shown in Fig. 8. 
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Fig. 8 Stations used to investigate the tsunami water level time history 
 
 

Figure 9 shows the time history of tsunami simulation results using the estimated fault slip model 
obtained by performing a Lasso regression by changing the value of the regularization parameter. Here, 
the simulation of tsunami water level time history was carried out by solving the nonlinear long wave 
equation discretized by the finite difference method (FDM). Figure 9 shows that the amplitude of the 
tsunami water level time history using the Lasso regression results is clearly smaller than that of the 
observation record in the case of λ = 1.0 × 10-3. On the other hand, in the case of λ = 1.0 × 10-8, the 
tsunami water level time history by the inversion result and the observation record are quite consistent. 
The examination of the slip characteristics of the fault model will proceed based on the quantitative 
relationship between the regularization parameter values and the tsunami water level time history. 

In the case of λ = 1.0 × 10-3 in Fig. 9 (1), the arrival time of the first direct wave coincides with 
observed data. On the other hand, the characteristic sharp pulse waveform in the time history cannot 
be expressed at all. However, the relatively long period components which constitute the basis of the 
waveform are consistent with the observation records. Therefore, in the fault model shown in Fig. 3 
(2) and Fig. 6 (1), the area where slips are concentrated in a near square shape contributes largely to 
the arrival time of the first wave and the long period components that constitute the base of the 
waveform. Next, as shown in Fig. 3 (3) and Fig. 6 (2), in the case of fault model (λ = 1.0 × 10−4), in 
which the slip has developed to the near trench axis, a sharp pulse waveform in the time history is 
expressed like the time history in Fig. 9 (2). In the individual detailed comparison of time history, 
although there are still variances from the recorded observations, the compatibility of both is improved 
significantly. Finally, the increase in the slip distribution area in space and time, as shown in Fig. 3 (4) 
to (8) and Fig. 6 (3), leads to a fault model that is highlight consistent with observation records, as 
shown in Fig. 9 (3) to (4). 

Figure 10 shows the amplitude ratio of time histories of tsunami simulation results using the Lasso 
regression model and observed values. Here, two types of calculation methods are shown: the 
maximum amplitude ratio and the RMS amplitude ratio. The results of both demonstrate virtually the 
same tendency. The amplitude ratio at λ = 1.0 × 10-3 is about 0.4. When λ = 1.0 × 10-6 or less, the 
fluctuation of the amplitude ratio does not occur and converges to a steady value. Also, regardless of 
the value of λ, the value of the amplitude ratio varies from observation point to observation point. As 
shown in Fig. 3 (2), fault slips at λ = 1.0 × 10-3 exist in the limited region. Nevertheless, the fact that 
about 40% of the time history waveform can be explained is considered to be that the amount of slip in 
this region has a considerable influence on the overall behavior. 
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(1) λ=1.0×10-3 

   
(2) λ=1.0×10-4 

Fig. 9 Time history of tsunami simulation results using the fault slip model 
estimated using a Lasso regression (1)  
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(3) λ=1.0×10-5 

   
(4) λ=1.0×10-8 

Fig. 9 Time history of tsunami simulation results using a fault slip model 
estimated using a Lasso regression (2) 
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(1) Maximum amplitude ratio          (2) RMS amplitude ratio 

Fig. 10 Amplitude ratio of time history of tsunami simulation result 
using a Lasso regression model and observed value 

 
(1) Residual sum of squares          (2) normalized RMSE (nRMSE) 

 
(3) Correlation coefficient     (4) Compatibility index by Willmott et al. (1985) (IOA) 

 
(5) Index of Watterson’s (1996) transformed Mielke (M) (6) Index of Mielke and Berry (2001) (ℜ) 

Fig. 11 A compatibility index of time history between tsunami simulation results 
using a Lasso regression model and observed values  
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The following explanations may be derived from the results presented thus far. A relatively long 
period component of the tsunami water level time history is generated by fault slips at a fairly deep 
part of the plate boundary off Miyagi Prefecture, which contributes to the formation of the main part 
of the waveform. Since relatively short period waves are generated from the tsunami earthquake area 
near the trench axis, sharp pulses and small undulations of the tsunami water level time history may be 
caused by the slip in this area. The application of the proposed method produced results that support 
the results of previous studies e. g. 6). 

Figure 11 shows the results obtained using various indices for the time history compatibility of the 
observed values and tsunami simulation results using a Lasso regression model with each 
regularization parameter. The indices used in Allen and Greenslade18) were followed as indices to 
evaluate the compatibility of observation records and numerical simulation results for tsunami water 
level time history. Allen and Greenslade18) found that the indices such as IOA and M are more suitable 
for evaluating the compatibility of time history waveforms, since they are more sensitive to waveform 
differences compared to correlation coefficients and nRMSE. In that same paper, they were used for 
the comparing the results of numerical calculations, but in this study, they are being used to compare 
observed values and numerical simulation results. 

Figure 11 shows that with the residual sum of squares and nRMSE, the difference between the 
wave reproduced by the numerical simulation and the observed data increases as the regularization 
parameter increases, but it is difficult to present versatile standard values for the compatibility of either. 
Since the maximum value of the other indicators is 1.0, they are deemed appropriate for a quantitative 
determination of compatibility. For these indices, the results show that the compatibility of either 
index is poor when the regularization parameter is at its largest (λ = 1.0 × 10-3). However, as the 
regularization parameter gradually decreases and the waveform difference decreases, the sensitivity of 
the other three indices (IOA, M, ℜ) are shown to be more sensitive to the difference in the model than 
the correlation coefficient, which is approximately 0.8 or more. Furthermore, the time history 
waveforms of the simulation results of TM1 and TM2 at λ = 1.0 × 10-3 in Fig. 9 (1) and the observed 
values do not seem to correspond well. However, the correlation coefficient is a sufficiently large 
value of about 0.87. This indicates that visual sense and correlation coefficient values do not always 
match. At this time, the three indexes of IOA, M and ℜ are less than 0.5 at most of the observation 
points, which indicates that the compatibility is not high. The compatibility for these three indices is 
higher when the regularization parameter is smaller than λ = 1.0 × 10-4. This result is consistent with 
the visual impression received from the compatibility of the time history waveforms in Figs. 9 (2) to 
(4). 

According to the three indices of IOA, M and ℜ, the order of the quality of the compatibility is 
consistent when the regularization parameter is small. GPS Miyagi M. has the highest compatibility, 
followed by GPS Miyagi N. and GPS Iwate N. Of the GPS ocean wave meter, the least compatible is 
GPS Fukushima. Among all the observation points, TM1 is the least compatible, followed by DART 
21418 and DART 21401. TM1 is caused by the fact that the reproducibility of the amplitude of the 
pulse part that produces the maximum value is not sufficient. The DART seems to be influenced by the 
inclusion in the simulation result of a short period component not found in the observation data. 

In addition, when evaluating the compatibility between the simulation results using the fault 
model obtained by tsunami inversion and the observation records, indices like IOA, M and ℜ, 
introduced in Allen and Greenslade18) are more useful than the correlation coefficient when examining 
models because they reflect differences in tsunami waveforms derived from different fault models. 

When performing future tsunami predictions necessary for tsunami-resistant design, the 
characterized fault model19) is generally used as the model of the wave source. Constructing a 
characterization fault model requires that fault plane be divided into a super-large slip area, large slip 
area, and background area, based on the slip displacements. For such segmentation, it is necessary to 
carry out inversion analysis for past tsunamis and to examine the characteristics of the slip distribution 
in the earthquake source fault. It is important to accumulate such information. 

- 16 -



By performing tsunami inversion based on the concept of sparse modeling, as described above, it 
is possible to efficiently understand which part of the spatiotemporal slip model of the seismic source 
fault contributes to the tsunami waveform. In particular, the results showed that the main 
characteristics of the tsunami waveform are formed by the slip that occurs at a slightly deeper portion 
of the plate boundary, and the slip near the trench axis contributes to the short period components of 
the tsunami waveform. The proposed method was therefore shown to be effective in analyzing the slip 
characteristics of fault models. 
 
 
5. CONCLUSIONS 
 
In this study, tsunami inversion was carried out using a Lasso regression, which is a typical form of 
sparse modeling, and the characteristics of the spatiotemporal distribution of slips in the seismic 
source fault were analyzed. This was done for the key purpose of developing the kind of tsunami 
prediction model necessary for tsunami-resistant design. The conclusions of this study derived from 
the investigation results are summarized below. 
・ Lasso-type sparse modeling can be applied to the tsunami inversion problem by modifying the 

conventional soft-thresholding function and using the soft-thresholding function that satisfies the 
nonnegative condition. 

・ By increasing the value of the regularization parameter, the solution of fault slip that has a large 
impact on the observation values, such as tsunami waveform, was obtained. This is considered to 
be important information in analyzing where and at which time the result of the slip has the most 
significance in the tsunami phenomenon on the fault plane. 

・ The results of the tsunami inversion based on the concept of sparse modeling show that the main 
characteristic of the tsunami waveform is formed by the slip occurring at a slightly deeper part of 
the plate boundary, and that slip near the trench axis contributes to relatively short-period 
components such as sharp pulses and small undulations in the tsunami waveform. 

・ An evaluation of the compatibility between the observation records and the simulation results 
using the fault models obtained by tsunami inversion, revealed that the indices (e.g., IOA, M and 
ℜ) introduced in Allen and Greenslade18) are more useful than the conventionally used correlation 
coefficients or RMSE when examining the models, because they more sensitively reflect 
differences in tsunami waveforms in different fault models. 
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