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ABSTRACT: In this study, we develop two methods for the inference of rotation vector 
on ground surface, two rocking rotations and a single torsional rotation. The first, termed 
nth-order elastic method, is based on the elasticity of the ground surface. The rotation vector 
is constructed from the first derivative with respect to the space of the ground surface 
motions. The first derivative is calculated from simultaneous equations by n-th order Taylor 
expansion obtained by difference motion between multiple observation points. Meanwhile, 
the second, termed rigid method, is based on the rigidity of ground surface and the rotation. 
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1. INTRODUCTION

Over the years, many reports and studies have noted the possibility that buildings were damaged by 
torsional vibration1)-3), including many reports concerning the 1995 Hyogoken-Nanbu Earthquake4). 
Damage due to torsional vibration was also reported for the 2016 Kumamoto Earthquakes in April 20165). 
In these reports and studies, the causes of the torsional vibration have generally been sought in the 
eccentricity of the buildings, and virtually no consideration has been given to the influence of rotational 
inputs. For the earthquake-resistant design, there are regulations covering the translational components 
of seismic inputs, but the rotational inputs are not regulated. As a result, the rotation components of 
seismic inputs are not taken into account. Nevertheless, it is thought that there is insufficient 
observational evidence to confirm that they do not need to be taken into account6). For instance, a report 
by Hada and Horike7) suggests that, for microtremors at least, the rotational inputs to the foundations of 
a building are too large to be disregarded. Two likely reasons why rotational inputs have not been taken 
into account to date are that it is not easy to conduct dense array seismic observations covering a scale 
such as that of the foundations of a building, and that techniques for assessing the rotation components 
recorded by the array have not been sufficiently established. 

As described later, rotation components are bound to exist on the ground surface whenever seismic 
motions exhibit spatial variation. In other words, with the exception of vertically-incident plane P- and 
S-waves, rotation components necessarily exist. And as vertically-incident plane waves are a practical
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impossibility in actual seismic motions, there are always rotational inputs. Consequently, the issue is not 
whether seismic motions include rotation components, but the scale of the rotation components. 
As far as the authors are aware, the only study in Japan that assumes the influence of rotational inputs 
on building vibration was conducted by Yagi et al8). Outside Japan, there have been studies concerning 
the assessment of rotation components of seismic data acquired using the Chiba Array and dense arrays 
at Rotung, Taiwan9)-11). Discussion of the relationship between maximum velocity and maximum angular 
acceleration has also commenced11). However, studies concerning the assessment of rotational inputs 
cannot be said to be sufficient in either quantitative or qualitative terms. Consequently, making use of 
small-size dense array seismic observations to increase knowledge concerning rotational inputs is a 
significant topic for study. As a result of progress in the development of seismic instruments, 
observations using small-size (of a scale similar to the foundations of a building) dense arrays such as 
the Chiba array12) are becoming less difficult, and many such observations may be conducted in the near 
future. 

Given these circumstances, this report begins by proposing a number of methods for inference of 
the three rotation components from seismic data acquired using a dense plane array deployed on a free 
surface, and describing the relationships between them. Next, microtremor observation with small-size 
dense microtremor array conducted in order to apply each of these inference methods. Finally, it 
describes the findings acquired by applying the rotation component inference methods to microtremor 
array data. Specifically, it describes findings concerning appropriate array configurations for obtaining 
the rotation components, and the inference and results for size of rotation components and for a region 
behaving as a rigid body with respect to rotation of rotation components. As described in Section 2 
below, in mathematical terms, the zone behaving as a rigid body with respect to rotation is the zone 
infinitesimally close to the reference site. However, it is considered that a limited zone may exist wherein 
the size of the rotation components centered on the reference site hardly varies. Such a zone that behaves 
as a rigid body with respect to rotation is important in engineering terms. 
 
 
2. ESTIMATION METHOD OF ROTATION COMPONENTS USING SMALL-SIZE DENSE 

ARRAY DATA 
 
2.1 Elastic body 
 
Consider a semi-infinite elastic body with coordinate axes as shown in Fig. 1. The displacements from 
a reference site ࢄ ൌ ሼݔଵ	 	ଶݔ ଷሽݔ

்   within the elastic body to two points separated by a sufficiently 
small distance ࢄࢾ ൌ ሼݔߜଵ	 	ଶݔߜ ଷሽݔߜ

்   are expressed in Lagrangian representation as ࢛ሺࢄሻ  and 
ࢄሺ࢛ ൅ 	ሻࢄࢾ . Here, bold face signifies a vector, and the expressions in the braces are the components of 
the vector. The relative displacement with respect to the reference site ࢛ࢾ ൌ 	 ࢄሺ࢛ ൅ ሻࢄࢾ െ  ,ሻࢄሺ࢛

 
Fig. 1 Coordinate system and definition of relative displacement δu 
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can be expressed as 
 

࢛ࢾ ൌ ൝
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ଶݑߜ
ଷݑߜ
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ൡ ൈ ൝
ଵݔߜ
ଶݔߜ
ଷݔߜ

ൡ            ሺ1ሻ	

 
 
as well known form, for example, Aki and Richards13). The first term on the right of the equation 
indicates the contribution of deformation such as shear deformation or expansion-contraction 
deformation to the relative displacement. In the second term, ߱௜, ሺ݅ ൌ 1,2,3ሻ expresses the rigid body 
rotation angle about the ݔ௜ axis if the condition ‖߱௜‖ ≪ 1 is met, and the second term indicates the 
relative displacement due to rigid body rotation. The relationship between the infinitesimal rotation 
angle ሼ߱ଵ	 ߱ଶ	 ߱ଷሽ

்  and displacement is expressed as 
 

൝
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߱ଶ
߱ଷ

ൡ＝
1
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ۗ

             ሺ2ሻ	

 
The ࢺ symbol signifies the three-dimensional nabla operator. From Eq. (2), it can be seen that if 

the seismic motion includes spatial variation, rotation components will necessarily be generated, and 
that their values can be calculated from the six partial derivatives relating to the spatial coordinates of 
the seismic motion displacement. It also makes it possible to anticipate that rotation components will be 
large in situations such as cases where strong scattered waves occur and cases where there are prominent 
surface waves with short wavelengths. 

When attempting to use Eq. (2) to calculate the rotation angles, an awkward issue arises. To calculate 

the rotation angles ߱ଵ and ߱ଶ, the partial derivatives 
డ௨మ
డ௫య

 and 
డ௨భ
డ௫య

 are required. And because these 

two partial derivatives are values relating to the ݔଷ  axis (depth axis), data of observations made 
underground are required. In other words, to calculate the rotation components using Eq. (2), a 3-
dimensional array including seismometers underground is required instead of a 2-dimensional array with 
seismometers only on the ground surface. However, acquiring seismic data with a 3-dimensional array 
that requires seismic observations to be made inside boreholes is not a simple matter. To resolve that 
issue, the free surface condition is used to replace the two partial derivatives relating to the depth 
direction with partial derivatives relating to the horizontal plane.  

In a free surface the ݔଵ direction and ݔଶ direction components of traction, ߬ଵଷ and ߬ଶଷ, are both 
zero. This condition can be expressed as 
 

ቄ
߬ଵଷ
߬ଶଷ

ቅ ൌ ܩ2 ቄ
ଵଷߝ
ଶଷߝ

ቅ ൌ ܩ

ە
۔

ۓ
ଵݑ߲
ଷݔ߲

൅
ଷݑ߲
ଵݔ߲

ଷݑ߲
ଶݔ߲

൅
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ۘ

ۗ
ൌ ቄ0

0
ቅ             ሺ3ሻ 

 
where ܩ is the shear modulus. Using Eq. (3), Eq. (2) can be rewritten as follows. 
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From this expression, it can be seen that it is possible to calculate the rotation components from the 

four partial derivatives inferred from the data acquired by a 2-dimensional array on the ground surface. 
Hereinafter, this report concerns inference methods using the 2-dimensional array data for these four 
partial derivatives.  

When the reference observation site coordinates are taken to be (ݔଵ଴, ݔଶ଴) and the coordinates of 
the nearby observation site ݆ are taken to be (ݔଵ଴ ൅ ଶ଴ݔ ,ଵ௝ݔߜ ൅  ௜௝, the ݅ component ofݑߜ , (ଶ௝ݔߜ
relative displacement (or differential motion) for observation site ݆ relative to the reference site, can be 
expressed, using Taylor series expansion and binomial theorem, as  

 

௜௝ݑߜ ൌ ଵ଴ݔ௜൫ݑ ൅ ,ଵ௝ݔߜ ଶ଴ݔ ൅ ଶ௝൯ݔߜ െ ,ଵ଴ݔ௜ሺݑ ଶ଴ሻݔ ≅෍
1
݇!
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൰
௞௡

௞ୀଵ
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௞
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௟
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Substituting the observed differential motion into the left side of the expression creates an equation 

system with the partial differential on the right side as an unknown. Resolving this gives the first-order 
partial derivatives, which can be substituted into Eq. (4) to obtain the rotation components.  

Cases using first- and second-order Taylor expansion (n = 1,2) are shown here as examples of this 

approach. With a first-order expansion, the unknowns are the two partial derivatives 
డ௨೔
డ௫భ

  and 
డ௨೔
డ௫మ

 . 

Consequently, the expression can be solved if there are 2 observation sites in addition to the reference 
site (3 observation sites in total). If the number of observation sites excluding the reference sites is m 
൒ 	 2, the equation system to be solved is  

 

൞

௜ଵݑߜ
௜ଶݑߜ
⋮

௜௠ݑߜ

ൢ ൌ ൦

	ଵଵݔ݀ ଶଵݔ݀
	ଵଶݔ݀ ଶଶݔ݀

⋮
	ଵ௠ݔ݀ ଶ௠ݔ݀

൪

ە
۔

ۓ
௜ݑ߲
ଵݔ߲
௜ݑ߲
ଶۙݔ߲

ۘ

ۗ
	 	 	 	 	 ሺ݅ ൌ 1,2,3ሻ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ6ሻ 

 
When a second-order Taylor expansion is applied, by using a number of observation sites excluding 

the reference site m≧5, the equation system to be solved is 
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	 ሺ݅ ൌ 1,2,3ሻ	 	 	 	 	 	 	 	 	 	 ሺ7ሻ 

 
where ݀ݔଵ௝ ൌ ൫ݔଵ௝ െ ,ଵ଴൯ݔ ଶ௝ݔ݀ ൌ ൫ݔଶ௝ െ …,ଶ଴൯. Also, j=1,2ݔ ,݉. Similarly, when using an nth-order 

Taylor expansion, the number of unknown partial differentials is 
௡ሺ௡ାଷሻ

ଶ
. The number of observation 

sites, including the reference observation site, must be at least as large as the number of unknown partial 
differentials. Expressions (5), (6), (7) are the same as those given in Basu et al10). for acceleration 
gradient method of order n (AGMn). Equation systems generated as described above can be solved using 
the weighted least squares method14) to obtain the rotation angles. The weighting matrix is the same as 
described by Spudich et al15). The method of inference of rotation angles assuming an elastic body and 
using an nth-order Taylor series expansion is hereinafter called the nth-order elastic method. 
 
2.2 Rigid body 
 
Using a first-order Taylor expansion to approximate differential motion means that differential motion 
is treated as movement on a plane passing through the reference site for an arbitrary period of time (at a 
certain moment). In slightly more concrete terms, Eq. (6) is an approximation of differential motion on 

a plane passing through the origin at gradient 
డ௨೔
డ௫భ

 in the ݔߜଵ direction and gradient 
డ௨೔
డ௫మ

 in the ݔߜଶ 

direction. In other words, with the 1st-order elastic method, the zone within which the observation sites 
are situated is considered to be a rigid body. Consequently, it should be possible to infer the same rotation 
components as for the 1st-order elastic method by assuming that the ground surface is a rigid body. The 
following description of rotation component inference methods assumes that the ground surface behaves 
as a rigid body. 

When a rigid body is assumed, the velocity at observation site ݆ ൛ݑሶଵ௝	 ሶݑ ଶ௝	 ሶݑ ଷ௝ൟ
்
, separated from 

the reference site by distance ࢄࢾ ൌ ൛ݔߜଵ௝	 	ଶ௝ݔߜ 	 0ൟ
்

, is expressed16), using the translational velocity 
ሼݑሶଵ଴	 ሶݑ ଶ଴	 ሶݑ ଷ଴ሽ் and angular velocity vector ሼ ሶ߱ ଵ	 ሶ߱ ଶ	 ሶ߱ ଷሽ் at the reference site, as  
 

ቐ
ሶଵ௝ݑ
ሶݑ ଶ௝
ሶݑ ଷ௝

ቑ ൌ ൝
ሶଵ଴ݑ
ሶݑ ଶ଴
ሶݑ ଷ଴

ൡ ൅ ൝
ሶ߱ ଵ
ሶ߱ ଶ
ሶ߱ ଷ
ൡ ൈ ቐ

ଵ௝ݔߜ
	ଶ௝ݔߜ
0

ቑ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ8ሻ 

 
Consequently, the differential velocity vector for the reference site is 

 

ቐ

ሶଵ௝ݑߜ
ሶݑߜ ଶ௝
ሶݑߜ ଷ௝

ቑ ൌ ቐ
ሶଵ௝ݑ
ሶݑ ଶ௝
ሶݑ ଷ௝

ቑ െ ൝
ሶଵ଴ݑ
ሶݑ ଶ଴
ሶݑ ଷ଴

ൡ ൌ ൝
ሶ߱ ଵ
ሶ߱ ଶ
ሶ߱ ଷ
ൡ ൈ ቐ

ଵ௝ݔߜ
	ଶ௝ݔߜ
0

ቑ ൌ ቐ

െ ሶ߱ ଷݔߜଶ௝	
ሶ߱ ଷݔߜଵ௝	

ሶ߱ ଵݔߜଶ௝	 െ ሶ߱ ଶݔߜଵ௝	

ቑ	 	 	 	 	 	 	 	 	 	 	 ሺ9ሻ 

 
Rotation angle velocity is obtained by finding the condition that minimizes the difference between 

the observed differential velocity and the differential velocity calculated from Eq. (9). Consequently, 
when a rigid body is assumed, it is possible to obtain the rotation components directly without the need 
for first-order spatial derivatives of acceleration as were required when an elastic body is assumed.  

First of all, using the expressions in the first and second steps of Eq. (9), angular velocity ሶ߱ ଷ is 
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obtained using the least-squares method. The residual sum of squares ݂ሺ ሶ߱ ଷሻ for the observed values 
and predicted values of differential velocity ݑߜሶଵ and ݑߜሶ ଶ is expressed as  

 

݂ሺ ሶ߱ ଷሻ ൌ෍ ቄ൫ݑߜሶଵ௝ ൅ ሶ߱ ଷݔߜଶ௝	 ൯
ଶ
൅ ൫ݑߜሶ ଶ௝ െ ሶ߱ ଷݔߜଵ௝	 ൯

ଶ
ቅ

௠

௝ୀଵ
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ10ሻ 

 

The condition under which this expression minimized is 
డ௙ሺனሶ యሻ

డఠሶ య
ൌ 0. Consequently,  

 

ሶ߱ ଷ ൌ
∑ ൫ݔߜଵ௝	 ሶݑߜ ଶ௝ െ 	ଶ௝ݔߜ ሶଵ௝൯ݑߜ
௠
௝ୀଵ

∑ ൫ݔߜଵ௝	
ଶ ൅ 	ଶ௝ݔߜ

ଶ൯௠
௝ୀଵ

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ11ሻ	

 
obtaining the angular velocity for the ݔଷ	 axis. 

Consider the situation where there is only one observation site apart from the reference site (m = 1). 
In this situation, Eq. (11) becomes 

 

ሶ߱ ଷ ൌ
	ଵଵݔߜ ሶݑߜ ଶଵ െ 	ଶଵݔߜ ሶଵଵݑߜ

	ଵଵݔߜ
ଶ ൅ 	ଶଵݔߜ

ଶ ൌ
1
ݎ
ሺݑߜሶ ଶଵcosߠ െ 	ሻߠሶଵଵsinݑߜ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ12ሻ 

 

 
Fig. 2 Explanation for inference of torsion (߱ଷ) components by the single-site rigid method 
 
In this expression, variables ݎ and ߠ, as shown in Fig. 2, express the distance between the reference 

site and observation site, and the angle between a straight line joining the reference site and observation 
site and the ݔଵ axis. The significance of this expression is clear. As shown in the figure, projecting the 
differential velocity for the two horizontal directions at the observation site onto a straight line that is 
perpendicular to the straight line joining the reference site and observation site, and dividing the sum of 
the two by distance ݎ, it is possible to obtain the rotation angle velocity ሶ߱ ଷ.  

Next, angular velocities ሶ߱ ଵ and ሶ߱ ଶ are obtained using the third step of Eq. (9). In this case, the 
residual sum of squares ݃ሺ ሶ߱ ଵ, ሶ߱ ଶሻ is  
 

݃ሺ ሶ߱ ଵ	 , ሶ߱ ଶሻ ൌ ෍ ൫ݑߜሶ ଷ௝ െ ሶ߱ ଵݔߜଶ௝	 ൅ ሶ߱ ଶݔߜଵ௝	 ൯
ଶ௠

௝ୀଵ
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ13ሻ 

 

 The conditions for minimizing Eq. (13) are as follows:
డ௚ሺఠሶ భ	 ,ఠሶ మሻ

డఠሶ భ
ൌ

డ௚ሺఠሶ భ	 ,ఠሶ మሻ

డఠሶ మ
＝0. 

 

Reference point 

Observation point 
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Solving this expression gives the angular velocities ሶ߱ ଵ and ሶ߱ ଶ. 

Here also, consider the situation where there is only the reference site and one observation site. In 
this case, Eq. (14) can not be used because the right-hand side matrix is irregular. It is necessary to return 
to Eq. (13). If the observation site is assumed to be on the ݔଵ axis, Eq. (13) becomes ݃ሺ ሶ߱ ଵ	 , ሶ߱ ଶሻ ൌ
ሺݑߜሶ ଷଵ ൅ ሶ߱ ଶݔߜଵଵ	 ሻଶ. The condition under which this expression is minimized is ሶ߱ ଶ ൌ െ

ఋ௨ሶ యభ
ఋ௫భభ	

. From 

this expression, it can be seen that it is possible to obtain the angular velocity with respect to the ݔଶ 
axis by dividing the vertical differential velocity by the distance between the observation site and 

reference site. Similarly, the angular velocity with respect to the ݔଵ	 is ሶ߱  ݏ݅ݔܽ ଵ ൌ
ఋ௨ሶ యభ
ఋ௫మభ	

 . The 

coordinate axes ݔଵ  and ݔଶ  are used here for convenience. Consequently, the angular velocity ሶ߱ ௥ 
obtained by dividing the vertical differential velocity by the distance between the observation site and 
the reference site is a good approximation for ሶ߱ ଵ, ሶ߱ ଶ. Hereinafter, cases where either Eq. (11) or Eq.      
(14) is used are referred to as the multi-site rigid method, and cases where Eq. (12) is used are referred 
to as the single-site rigid method. 

Summarizing the above results, angular acceleration obtained by the 1st-order elastic method on the 
assumption of an elastic body (or in other words, angular acceleration obtained by means of Eq. (6)) is 
identical to angular acceleration obtained by the multi-site rigid method. Moreover, rotation components 
ሶ߱ ଷ and ሶ߱ ௥ can be easily obtained by the single-site rigid method with just one more observation site 

in addition to the reference site. The relationship between the rotation angle obtained as an elastic body 
and the rotation angle obtained as a rigid body is discussed in detail in Section 4. 

The descriptions in Section 2.1 of the nth-order elastic method assuming an elastic body incorporate 
displacement and rotation angle, but these can be replaced by acceleration and angular acceleration 
without any need for further change. As observations are conducted by observing acceleration, the 
rotation components obtained by the nth-order elastic method are all shown in terms of angular 
acceleration below. Also, this section described the inference methods for angular velocity as a rigid 
body. In this case, acceleration data is converted to velocity data by numerical integration, and the 
method described in this section is used to infer angular velocity before converting to angular 
acceleration by numerical differentiation. For this reason, hereinafter, the dot above the ߱ symbol that 
represents angular acceleration is omitted for convenience. Also, ߱ଵ , ߱ଶ ,	 ߱௥  will be described as 
rocking components, and ߱ଷ as a torsional component. 
 
 
3. MICROTREMORS ACQUIRED WITH A SMALL-SIZE DENSE ARRAY AND 

DIFFERENTIAL MOTION CHARACTERISTICS 
 
3.1 Microtremors acquired with a small-size dense array 
 
Small-size dense array seismic observations extend over long periods (several months to several years), 
which raises issues such as the selection of the array installation site and maintenance of seismic 
instruments, making it difficult to establish such arrays. To circumvent these issues, this study made 
observations of microtremors using a small-size dense array that are relatively easy to conduct. The 
rotation component inference methods described in the preceding section were then applied to the 
microtremor data acquired. The observations were made at a public park in Osaka City. 

According to KuniJiban17), the borehole data access site operated by Japan’s Ministry of Land, 
Infrastructure, Transport and Tourism, boring data has been published for a number of sites within the 
park where the observations for this study were made. The boring data shows that to a depth of about 
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20-30 m, there was silt or sand with an N value of 10 or less, so the ground is envisaged as relatively 
soft. Below that layer is a foundation with an N value of at least 50. In addition to the boring data, the 
data acquired for the current study was used to investigate a ground model using f-k spectra, with the 
result that the shear velocity near the surface was inferred to be about 140 m/s18). 

Figure 3 shows the arrangement of observation sites in the array. The coordinate axis and observation 
site names are indicated in the figure. Reference observation site (S0) was taken as the origin for the 
coordinates. Three-component seismometers were installed at 5 points on each of three lines radiating 
out from the reference observation site at the center at approximately 120 ° intervals. Hereinafter, the 
groups of observation sites on the same line will be referred to as Group A, Group B, and Group C as 
shown in the figure. Also, the observation sites at almost an identical distance (radius) from the reference 
site will be referred to as Ring 1 to Ring 5 as shown in the figure. The mean diameters of these rings are 
2.06 m, 5.29 m, 9.04 m, 14.02 m, and 25.03 m. At observation site A2 (marked in the figure with a white 
square), the vertical components are clearly abnormal, so the data from this observation site was 
excluded from the study. 

 

 
Fig. 3 Small-size dense array configuration 

 
The instruments used for the observations were dual-purpose microtremor detectors and 

seismometers incorporating servo acceleration sensors as developed by Senna et al. (2006)19). These 
instruments were developed for geophysical prospecting, and are frequently used for microtremor 
observations20). We set the sampling intervals to 0.01 s. The observation period was from 15:30 on 
August 12, 2015 to 01:30 on August 13. Rain fell from 23:30 on August 13, raising the suspicion that 
microtremor data from that point onwards was affected by rain. There are also roads with heavy traffic 
near the park. To eliminate the effect of rain and to avoid the effects of traffic as far as possible, analysis 
was performed on data acquired between 23:00 and 23:30. 
 
3.2 Characteristics of differential acceleration 
 
As stated in Chapter 2, angular acceleration is inferred from differential motion acceleration data 
(hereinafter, differential motion), which is the difference between the reference site data and the 
acceleration data a number of other observation sites. Consequently, it is important to investigate the 
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sort of characteristics that the differential motion has. Figure 4 shows the differential motion for the 
horizontal ݔଵ  direction component for the observation sites in Group B. The differential motion is 
based on the observation data for the reference observation site (S0) (see Fig. 3). Before calculating 
differential motion, the data is passed through a 0.2-8 Hz bandpass filter to eliminate the DC component 
and the high frequency components. As can be seen from the figure, the greater the distance from the 
reference site, the greater the differential motion amplitude. This characteristic is similar for the other 
two components and for the three components of Groups A and C. Next, the characteristics for frequency 
ranges are investigated.  
 

 
Fig. 4 Example of differential acceleration(ݔଵ component of Group B), which is the difference between 

the reference site data and the acceleration data a number of other observation sites 
 

The differential motion power spectra for the horizontal ݔଵ  direction component at each 
observation site is shown in Fig. 5 for the three groups. Power is large in the 2-8 Hz range, so this range 
is taken to be the main range covered by this study. As can be surmised from the time-history waveform, 
for all frequency bands, the spectra increase with distance of the observation site from the reference site. 
Examining the shapes of the spectra for each observation site, it can be seen that for observation sites 
closer to the reference site, the spectra increase as frequencies become higher. In contrast, with 
observations sites further from the reference site, the low frequency components increase. As a result, 
regardless of the frequency, the shapes of the spectra are either steady or even declining with increasing 
frequency. The figure depicts only the horizontal ݔଵ  direction components, but the spectra for the 
horizontal ݔଶ direction components and vertical ݔଷ direction components are similar. These spectra 
characteristics are thought to be due to calculation of differential motion for observation sites close to 
the reference site canceling the long wavelength (low frequency) components, whereas at distant 
observation sites, the long frequency components become more difficult to cancel. 
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Fig. 5 Differential acceleration ݔଵ component power spectra 

 
 
4. ESTIMATION OF ANGULAR ACCELERATION ASSUMING AN ELASTIC BODY 
 
4.1 1st-order elastic method 
 
This section describes inference of rotation components by means of the nth-order elastic method 
proposed in Section 2. 1. Also, if possible, it describes inference of the zone in which there is behavior 
as a rigid body with respect to rotation. Before describing these inference processes, it describes the 

basic approach for inference of rotation components. As can be seen from Eq. (5), 
డ௨೔
డ௫భ

 and 
డ௨೔
డ௫మ

, the 

first-order spatial derivatives of acceleration required for inference of rotation components are the 
gradient of the tangent plane in the ݔଵ and ݔଶ directions for the i component differential motion at the 
reference site. The gradient of the tangent plane can be obtained by two methods. To simplify the 
explanation here, rather than thinking of two dimensions, it thinks in terms of a certain moment with a 
single dimension, obtaining the gradient of the tangent to the differential field. 

The differential field δu uses the Taylor series expansion with respect to spatial coordinate ݔߜ, 
expressing it as  
 

ݑߜ ൌ ܽଵݔߜ ൅ ܽଶݔߜ
ଶ ൅ ܽଷݔߜଷ ൅ ⋯	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ15ሻ 

 
If ݔߜ  is sufficiently small, the second- and higher-order terms have very little influence, so 

differential motion field ݑߜ can be approximated from the first term alone. In other words, it is possible 
to obtain the gradient ܽଵ of the tangent using ݑߜ ≅ ܽଵݔߜ. To obtain the gradient of the tangent by this 
method, it is necessary for ݔߜ to be infinitesimally small, but that is impossible to achieve with actual 
observations, so differential motion data for an observation site close to the reference site is used. For 
this reason, there is always doubt as to whether the gradient obtained is an appropriate approximation 
of the true value. In order to use this approach with data from an array in a two-dimensional plane, only 
the differential motion for the observation site close to the reference site is applied to the 1st-order elastic 
method (Eq. (6)) to obtain the rotation components, and as when using a single-dimension array, there 
is doubt as to whether the inferred rotation components are an appropriate approximation of the true 
value. Another issue arises when the spatial coordinate ݔߜ  is large. In such cases, the differential 
motion field is expressed by a Taylor series expansion including second- and higher order terms, and 
the coefficient of the first order term with respect to ݔߜ is extracted as the gradient. With this method, 
there is the issue of what order of Taylor series expansion should be used to approximate differential 
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motion data. When using an array in a two-dimensional plane, the n (n ≥ 2) th-order elastic method is 
applied, but it is difficult to determine the appropriate order. As described, there are disadvantages with 
each method, and consequently it is not possible to demonstrate rigorously that the inferred rotation 
components are the true rotation components. In this study, the rotation components inferred by both the 
1st-order elastic method and the high-order elastic method are assessed together to decide the rotation 
components. 

The approach used for determining the zone within which behavior is taken to be a rigid body with 
respect to rotation is as follows. With the n (n ≥ 2) th-order elastic method, since the zone to be taken 
into account is treated as an elastic body, the inferred angular acceleration is the angular acceleration at 
the reference site. In contrast, with the 1st-order elastic method, as already stated, since the zone to be 
taken into account is taken to be a rigid body, the inferred angular acceleration is the angular acceleration 
of the zone taken into account. Consequently, if the angular acceleration inferred by the nth-order elastic 
method and the angular acceleration inferred by the 1st-order elastic method are identical, it is possible 
to take the zone under consideration with the 1st-order elastic method to be a zone that behaves as a 
rigid body with respect to rotation. Conversely, if the two are not identical, it can be judged that there is 
no zone behaving as a rigid body. 

The remainder of this section describes inference of rotation components by means of a first-order 
elastic body. The following section describes inference of rotation components by means of an nth-order 
rigid method, (n ≥ 2), and based on the approach set out above, obtaining the zone within which angular 
acceleration behaves as a rigid body. 

 

 
Fig. 6 Results of inference of 3-component angular acceleration ሺ߱ଵ, ߱ଶ, ߱ଷሻ,	  

inferred by the 1st-order elastic method 
 
Three-component angular acceleration acquired by the 1st-order elastic method is shown in Fig. 6. 

If all that needs to be obtained is angular acceleration, it would be sufficient to use a Ring 1 observation 
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site, which is closest to the reference site, but in order to investigate the zone that behaves as a rigid 
body with respect to rotation, angular acceleration is also obtained from the differential motion data of 
observation sites on each of the other rings apart from Ring 1. The three charts in the top row are inferred 
from the three observation sites of Ring 1. The leftmost shows ݔଵ  angular acceleration (߱ଵ ) with 
respect to the ݔଵ	 axis, the central chart shows angular acceleration (߱ଶ) with respect to the ݔଶ	 axis, 
and the rightmost shows angular acceleration (߱ଷ) with respect to the ݔଷ axis. The second row shows 
the results of inferring from the differential motion data of the Ring1, 2 observation sites, and the 
subsequent rows show the subsequent rings (or zones) taken into consideration. The bottom row shows 
the result of inferring from the differential motion data of the Ring1, 2, 3, 4, 5 observation sites (that is 
to say, all observation sites). For the Ring 1 3-component rotation waveform and the Ring1, 2 3-
component rotation waveform, amplitudes and waveforms resemble each other well, but as the zone 
taken into account expands to Ring3, Ring4, and Ring 5, the charts show variations, with amplitude 
decreasing and high-frequency components decreasing, as the difference relative to the angular 
acceleration waveforms of the top row of charts grows. For the power spectra shown in Fig. 7, as with 
the results for the time domain, there is a clear decrease in high-frequency components as the zone taken 
into account expands. 

 

 
Fig. 7 Power spectra	 ሺ߱ଵ, ߱ଶ, ߱ଷሻ	 for the angular acceleration shown in Fig. 6 

 
The accuracy of the rotation components shown in Fig. 6 was inferred. Directly assessing accuracy is 

not possible because the true rotation components are not clear. Instead, an indirect method is used. 
Using the observed differential acceleration waveform (abbreviated as “observed differential motion”), 
and the partial derivatives with respect to spatial variables, the calculated differential acceleration 
waveforms (abbreviated as “calculated differential motions”) obtained from Eq. (6) are compared. In 
Fig. 8 (a), the results of comparing Ring1 ݔଵ components shows that both match well. The results for 
the ݔଶ components and ݔଷ components are not shown in the figure, but they also match well. Also for 
the Ring1, 2 calculated differential motion and observed differential motion shown in Fig. 8 (b), there 
is a slightly inferior match at observation site A1, but there is a good match for the other four observation 
sites. Consequently, it is considered that the rotation components can be inferred with very good 
accuracy from the differential motion of the Ring 1 or Ring1, 2 observation sites. However, when a more 
expansive zone is used from Ring 3 outwards, the match between the two becomes poor. Figure 8 (c) 
shows a comparison using all observation sites of Ring1, 2, 3, 4, 5, and the match between the two is 
very poor. That is to say, it can be seen that if the differential motion taken into account is that for a 
broader zone from Ring 3 outwards, the rotation components cannot be appropriately inferred with the 
1st-order elastic method. 
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(a) Using differential motion data for ring 1 alone 

 

 
(b) Using differential motion data up to Ring 2 

 

 
(c) Using differential motion data up to Ring 5 

Fig. 8 Comparison of observed differential motion data and differential motion data 
reproduced using derived functions with the 1st-order elastic method 
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As already stated above, if the zone taken into account is narrow, a first-order Taylor expansion (that 
is to say, the 1st-order elastic method) is acceptable, but as the zone taken into account expands, it is 
necessary to use a higher order Taylor series expansion (that is to say, the nth-order elastic method). For 
this reason, when obtaining rotation components using differential motion data for a relatively narrow 
zone such as Ring 1 or Ring 1, 2, it is considered that a reasonable result is obtained from the 1st-order 
elastic method. However, for wider zones, it is necessary to obtain rotation components using the higher 
order elastic method. and if the 1st-order elastic method is used, the discrepancy between the observed 
differential motion and calculated differential motion grows, and as a result, it is considered that a low 
accuracy inference of rotation components will be achieved.  

 

 
Fig. 9 Schematic showing Taylor series expansion higher-order terms contributing to high 

frequency angular acceleration 
 
Here, the significance of the Taylor series expansion higher-order terms is examined. To simplify 

the examination, it is explained in terms of a schematic single-dimension differential motion field at a 
certain moment (Fig. 9). Using a first-order Taylor expansion to approximate the differential motion 
field data shown as a dashed line for all observation sites (white circles) is equivalent to approximating 
the dashed line with the solid straight line seen in the upper panel of the figure. The lower panel shoes 
the difference between the approximated solid line and the observed values. It can be seen from this 
figure that there are residuals that cannot be approximated by a straight line. These residuals include a 
large number of short wavelength (high frequency) components. It can be understood that the 2nd-order 
and higher terms of the Taylor series expansion are brought in to approximate the high-frequency 
components included in these residuals. In other words, the approximation of differential motion over a 
wide zone with a first-order Taylor expansion alone (that is to say, using the 1st-order elastic method) is 
identical to using spatial smoothing to attenuate the high-frequency components. This way of thinking 
can be used to understand the characteristics shown in Fig. 7. Taking a wider zone into account means 
that more high-order terms have to be considered, but in cases where only 1st-order terms are taken into 
account, the high frequency components are disregarded, so that the amplitudes of inferred rotation 
components become smaller, and the low frequency components predominate.  

From this discussion, it is thought that the zone within which appropriate angular accelerations can 
be obtained with the 1st-order elastic method is about 5 m from the reference site, to Ring 2 at the most. 
However, as stated above, although the Ring1, 2 observation sites are relatively close to the reference 
site, the distance is not infinitesimally small, so there is no guarantee that the Ring 1 or Ring1, 2 rotation 
components are good approximations of the true rotation components. For this reason, in the next section 
onwards, the n (n ≥ 2) th-order elastic method is used to infer rotation components, and results are 
compared with the rotation components already inferred with the 1st-order elastic method in an attempt 
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to determine truer components (or good approximations of them). The zone within which there is 
behavior as a rigid body is also investigated. 
 
4.2 n (n ≥ 2) th-order elastic method 
 
The rotation components are inferred using the method with the highest order, the 4th-order elastic 
method. In this case, at least 14 observation sites excluding the reference site are required, so the 
inference method uses differential motion data for all observation sites in the array shown in Fig. 3. The 
waveforms inferred for the three rotation components are shown in the second row of Fig. 10. For 
comparison, the top row shows the angular acceleration waveforms inferred by the 1st-order elastic 
method from the differential motion data of the 3 observation sites on Ring 1. 

 

 
Fig. 10 Results of inference of angular acceleration vector by the highest- 

order elastic method when using all observation sites on each ring 
 

Before making these comparisons, the accuracy of the rotation components obtained by the 4th-
order elastic method was investigated by comparing observed differential motion with calculated 
differential motion (Fig. 11). As before, only the ݔଵ components are shown here, but the two motions 
virtually matched for almost all the observation sites. Compared to the inference by means of the 1st-
order elastic method using the differential motion data for all observation sites shown in Fig. 8(c), the 
match between the observed differential motion and calculated differential motion is improved by a 
surprising amount. The ݔଶ components and ݔଷ components, not visible here, also almost completely 
matched. This suggests that the rotation components shown in the second row of Fig. 10 are highly 
accurate. The reason that the observed differential motion and calculated differential motion gave such 
a good match is thought to be due to taking high-frequency components into account by using the Taylor 
series expansion up to the 4th order. 
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Fig. 11 Comparison of observed differential motion data for all observation sites and differential 

motion data reproduced using derived functions with the 4th-order elastic method 
 

When the angular acceleration obtained by means of the 1st-order elastic method from differential 
motion data for the 3 observation sites of Ring 1 shown in the top row of Fig. 10 is compared with the 
rotation components obtained by the 4th-order elastic method and shown in the second row, the 
waveforms for the three components resemble each other, but the amplitude of the former is a little 
smaller than the latter. This suggests that the latter (the rotation components in the 2nd row) is closer to 
the true rotation components than the former (the rotation components in the 2nd row). This also 
suggests that the rotation components for Ring 1 or Ring 1, 2 are not the optimum approximation for 
the true rotation components. To obtain better approximations with the 1st-order elastic method, it is 
thought that it is necessary to establish new observation sites closer to the reference site than Ring 1. 

In the case where the 4th-order elastic method is used, considering three points - the results of 
comparison between the observed differential motion and calculated differential motion, the results of 
comparison of the amplitude of rotation components obtained by the 4th-order elastic method and of 
rotation components obtained by the 1st-order elastic method, and the fact that the 4th-order elastic 
method contains the highest frequency components - is seems reasonable to judge that the angular 
acceleration waveforms inferred by the 4th-order elastic method and shown in the 2nd row of Fig. 10 
are the best approximation to the true rotation components. In the following discussion, these three 
angular acceleration waveforms are treated as being an appropriate approximation to the true angular 
acceleration waveforms. 

The discussion up to this point has been based on visual comparison of the rotation components 
waveforms for a short period of time (5 seconds). Consequently, the reliability of the conclusions is 
slightly compromised. To address this issue, inferences of rotation components for a longer segment 
were investigated using the root mean square (RMS) of the inferences to confirm the conclusion 
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obtained (that the angular acceleration waveforms obtained by the 4th-order elastic method are an 
appropriate approximation of the true rotation components), and also to investigate the zone behaving 
as a rigid body with respect to rotation. The RMS amplitude was obtained for the 3-component angular 
acceleration obtained by means of the 1st-order elastic method for the five different zones of differential 
motion shown in Fig. 6. The segment used was approximately 10 minutes, a part of the 30-minute record 
where the influence of local traffic was small (Fig. 12). The RMS amplitude of 3-component angular 
acceleration obtained by the 4th-order elastic method that is considered to be an appropriate 
approximation of true angular acceleration was marked as being at the radius zero position. The radius 
on the horizontal axis represents the mean radius for each ring. 
 

 
Fig. 12 Comparison of RMS amplitude for the 3 angular acceleration components 

 
The RMS amplitudes of the 2 rocking components shown at the origin were both larger than the 

RMS amplitude at radius 2.06 m (Ring 1). This result is identical to the result of visual comparison of 
the rotation components shown on the top row and second row of Fig. 10. That is to say, in the 
comparison of RMS amplitude, this indicates that the angular acceleration of the 2 rocking components 
inferred by the 4th-order elastic method is a better approximation of the true angular acceleration than 
the 3-component angular acceleration obtained from by the 1st-order elastic method from the differential 
motion data of the 3 observation sites on Ring 1. 

Also, the fact that the RMS amplitude is different at the origin and at a radius of 2.06 m indicates 
that even if there were a limited area where the two rocking components behave as a rigid body, it would 
be too small to be detectable with the arrangement of the array shown in Fig. 3.  

The situation with the torsional component is not the same as with the two rocking components. Its 
RMS amplitude is greatest at the origin, but it does not differ greatly at radius 2.05 m and radius 2.29 m 
(Ring2), and appears to be saturated. These three RMS amplitude values for the torsion component show 
significant scatter, which makes judgment difficult, but suggests the possibility that torsion may be 
behaving as a rigid body in a zone of about 5 m from the reference site. 

The description above has covered the results using differential motion data for all observation sites, 
but it would also be useful to learn about narrower zones of differential motion data, discovering what 
sort of relationship there is in such zones between true angular acceleration (in practice, the second row 
of waveforms in Fig. 10) and angular acceleration inferred using the elastic method with the largest 
available order. To investigate this issue, the angular acceleration waveforms inferred in the three cases 
set out below are shown in the third and subsequent rows of Fig. 10.   

The third row shows the angular acceleration waveforms, for the three rotation components acquired 
from differential motion data at the observation sites on Ring 1-Ring 4 by the 3rd-order elastic method.  

The fourth and fifth rows show the angular acceleration waveforms for the three rotation components 
acquired from differential motion data at the observation sites on Ring 1-Ring 3 by the 3rd-order elastic 
method and on Ring 1-Ring 2 by the 2nd-order elastic method. Observed differential motion and 
calculated differential motion still matched well in these cases.  

What is surprising is that in addition to the 3-component angular acceleration shown in the second 
row and the 3-component angular acceleration shown in rows 3 to 5 matching well in terms of their 

߱ଶ

߱ଷ 

߱ଵ 
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waveforms, they also have well-matching amplitude. This comparison has only been conducted 
visually, so here too, confirmation is made using RMS amplitude (Fig. 13). The time used for RMS 
amplitude calculations is the same as used in Fig. 10. For comparison purposes, the RMS amplitude 
of the 3- component angular acceleration obtained by the 1st-order elastic method from the differential 
motion data of the 3 observation sites on Ring 1 is also added. 
 

 
Fig. 13 Estimates of RMS amplitude for the 3 angular acceleration components shown in Fig. 10 
 

The horizontal axis in the figure shows the order of the Taylor series expansion. The figure in 
parentheses after the figure is the number of the outermost ring used. From Fig. 13, it is possible to 
confirm statements made above. Specifically, the RMS amplitude of each of the three components of 
the rotation angle acceleration inferred by the 1st-order elastic method is smaller than the RMS 
amplitude for any of the remaining four cases.  

On the other hand, the RMS amplitude for a particular component is virtually identical to the 
corresponding component across the four cases. This result is significant because it means that inference 
of the rotation components is possible with a much simpler array than that shown in Fig. 3. Specifically, 
it is sufficient to have an array in a narrow zone (extending to about Ring 3) around a reference site, 
along with enough observation sites (about 10) to be able to use the 2nd- or 3rd-order elastic method. 
However, this is a conclusion about this particular array, and was obtained in respect of the arrangement 
of the current array and of the microtremors that were present. Further study would be required before 
being able to use it unmodified for array observations, particular of seismic waves, because seismic 
waves differ from microtremors in terms of both group structure (whether surface waves are prominent, 
or body waves are prominent) and the frequency bands that are of concern. Even obtaining a conclusion 
with general application to the configuration of arrays for inference of rotation components is outside 
the scope of this study, and it is difficult to say anything more at this stage. Looking at the details, it has 
to be said that the RMS amplitude of rotation components obtained by the 3rd-order elastic method from 
differential motion data for observations sites up to Ring 3 is a little small. The reason is thought to be 
that with the 3rd-order elastic method, the number of unknown partial derivatives is 9, but the number 
of observation sites is 8, and as a result, Eq. (5) is underdetermined. 
 
 
5. ESTIMATION OF ANGULAR ACCELERATION ASSUMING A RIGID BODY 
 
5.1 Multi-site rigid method 
 
If a rigid body is assumed, it is possible to infer rotation components with a small number of observation 
sites, which has the advantage that observations are simpler. Specifically, at least 3 sites including the 
reference site are required for the multi-site rigid method, whereas only 2 sites are required for the 
single-site rigid method. Consequently, in order to be able to make use of this simple observation method 
assuming a rigid body, it is important to understand the differences and commonalities between 
assumption of a rigid body and assumption of an elastic body in inference of rotation components.  

In section 2.1, it was demonstrated that the 1st-order elastic method and the multi-site rigid method 

߱ଶ
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are identical. The first task here is to confirm that statement. Figure 14 uses differential motion data 
from observation sites on Ring 1 to compare angular acceleration inferred by the multi-site rigid method 
and angular acceleration inferred by the 1st-order elastic method. It can be seen that the two match well. 
Nevertheless, it can also be seen that there are slight differences in the details (particularly for ߱ଷ). The 
differences are thought to be due to small differences in the inference methods used by these two 
methods. Specifically, the elastic method uses the weighted least-squares method14) for inference of 
differential motion, whereas the multi-site rigid method performs the inference by applying the least-
squares method to differential velocity data obtained by numerical integration instead of to differential 
acceleration data. This is thought to account for the differences. Of course, angular acceleration inferred 
by the multi-site rigid method displays similar characteristics to angular acceleration inferred by the1st-
order elastic method. 

 

 
Fig. 14 Comparison of angular acceleration inferred by the multi-site rigid method and the 1st-order 

elastic method from differential motion data acquired from the observation sites on Ring 1 
 

5.2 Single-site rigid method 
 
The single-site rigid method, which facilitates simpler observations than the multi-site rigid method, is 
investigated here. Figure 15 shows torsion waveforms inferred by the single-site rigid method for 
differential motion data for each of the three observation sites on Ring1. The three waveforms are clearly 
different. From these, it can be understood that it is not appropriate to use torsion waveforms obtained 
by the single-site rigid method as angular acceleration waveforms. Next, the usability of RMS amplitude 
is investigated. 

First of all, a comparison is made between the RMS amplitude (white and black triangles pointing 
down) for the two rocking components ߱ଵ and ߱ଶ inferred by the 1st-order elastic method and the 
RMS amplitude for the rocking component ߱௥ for each observation site in Group A, B, C inferred by 
the single-site rigid method (Fig. 16). The rocking component ߱௥ rocks with respect to an axis that 
passes through the reference site and perpendicular to the axis linking the reference site and observation 
site. The RMS amplitude of rocking inferred by the single-site rigid method exhibits scattering of 
inference values between groups but its value increase as the radius becomes smaller. When the RMS 
amplitudes of the 2 rocking components inferred by the 1st-order elastic method are compared, with the 
single-site rigid method the RMS amplitude becomes over-large when the radius is large. However, 
close to the reference site (within a 5 m radius), the values resemble each other well.  

A similar comparison is performed for the torsional component (Fig. 17). For Group A, B, C, there 
is a great deal of scatter in the torsion inferences between the groups, but with the exception of Group 
A, it exhibits characteristics that are very similar to those of the rocking components. Specifically, when 
compared to the inference produced by the 1st-order elastic method, with the single-site rigid method 
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the RMS amplitude becomes over-large when the radius is large. However, close to the reference site 
(within a 5 m radius), the values resemble each other well.  

As noted above, the comparison between 1st-order elastic method and single-site rigid method RMS 
amplitudes means that close to the reference site, the single-site rigid method RMS amplitude is a guide 
to RMS amplitude under the 1st-order elastic method. Close to the reference site is the zone where the 
accuracy of RMS amplitude for rotation components produced by the 1st-order elastic method is high, 
so this is an important characteristic of RMS amplitude with the single-site rigid method that simplifies 
observations. 

Demonstrating that the single-site rigid method characteristics described above have general 
application is important for use of its RMS amplitude. As noted in Section 4. 2, with the 1st-order elastic 
method, the greater the zone taken into account, the stronger the attenuation of high-frequency 
components due to spatial smoothing. For this reason, inferences are made of angular acceleration, 
which is only accurate close to the reference site. In contrast, the single-site rigid method only uses the 
differential motion data for a single observation site, so it cannot perform any smoothing. That is to say, 
the single-site rigid method does not attenuate any of the high-frequency components, so it takes into 
account all differential motion frequency components observed. Because of that characteristic, RMS 
amplitude calculated by the single-site rigid method may be higher than the 1st-order elastic method 
RMS amplitude when far from the reference site, but is thought to approach the 1st-order elastic 
method’s value when close to the reference site. 

 

 
Fig. 15 Comparison of the torsional component inferred by the single-site rigid method for differential 

motion data at each of the three observation sites on Ring 1 
 

 
 
 
 

Fig. 16 Comparison of RMS amplitude for rocking 
inferred by single-site 

rigid method and 1st-order elastic method 

Fig. 17 Comparison of RMS amplitude for 
torsion inferred by single-site rigid method 

and 1st-order elastic method 
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6. SUMMARY AND DISCUSSION 
 
This study describes methods for inference of the rotation components included in seismic motions on 
a free ground surface using small-size dense array observation data, application of the inference methods 
to small-size dense array observation data, and findings for finding appropriate rotation components. 
The results obtained are summarized below. 
(1) As methods of inferring angular acceleration using small-size dense array observation data, the 

study proposes 1) an nth-order elastic method for inferring rotation components from first-order 
spatial derivatives obtained by the weighted least squares method from differential motions using 
nth-order Taylor expansions, assuming an elastic body, 2) by the least-squares method and assuming 
a rigid body, a multi-site rigid method for directly inferring rotation components from multi-point 
differential motion data, and a single-site rigid method for directly inferring rotation components 
from single-point differential motion data. In particular, the 1st-order elastic method and multi-site 
rigid method are identical. 

(2) By applying the 1st-order elastic method and 4th-order elastic method to microtremor data acquired 
by a small-size dense array, the study inferred the angular acceleration of 2 rocking components and 
a torsional component. It also indicated the possibility that for the torsional component, the ground 
behaves as a rigid body within a radius of about 5 m. 

(3) The study demonstrated that although angular acceleration inferred by the single-site rigid method 
does not have as much reliability as a waveform, its RMS amplitude can be used as a guide to multi-
site rigid method RMS amplitude close to the reference site. 

(4) The study found that to obtain the rotation components by an nth-order elastic method, it may be 
possible to use an array with a simpler configuration than the one used in this research. It also found 
that, in order to obtain the rotation components by the 1st-order elastic method, it is necessary to 
establish an observation site closer to the reference site than Ring 1. 
The findings of this study were based on data from observation of microtremors with a small-size 

dense array, but the conclusions above potentially provide a guide for inference of the rotation 
components of seismic motions by dense array observations. 

The authors’ study of rotation components was motivated by a question from one of the reviewers 
when we submitted Hada and Horike7), a paper in which we demonstrated that Green’s functions could 
be inferred for an 8-story torsionally-coupled shear building with SRC columns and structural steel 
beams. In that paper we considered the rotation components that we inferred from microtremors on the 
basement floor to be rotational inputs to the upper floors. The reviewer asked whether the rotation 
components on the basement floor were due to rotational inputs from the ground. A brief description of 
the results of our investigation into that question follows. 

Ideally, the original survey should have included setting up a small-size dense array near the building 
and conducting observations at the same time as the microtremor observations in the building. However, 
for various reasons, including a shortage of usable seismic instruments and issues with finding vacant 
land near the building, no such small-size dense array observations were made. As an indirect attempt 
to rectify this omission, we investigated the microtremor data acquired by the small-size dense array in 
the current study. 

If it is assumed that the basement floor is a rigid body, there is no distance from the building’s center 
of gravity for the rotation components. Consequently, the torsional component inferred from the 
differential motion data of all observation sites within the foundations zone using the 1st-order elastic 
method (or the multi-site rigid method) can be considered to be the torsional component for the basement 
floor. The area of the basement floor in the building is about 33 ൈ 19	 mଶ. A similar array area would 
be the zone from Ring 1 to Ring 4 (ߨ ൈ 13. 5ଶ	 mଶ ). Using the differential motion data for the 11 
observation sites in the Ring 1-Ring 4 zone, we inferred the angular acceleration by the 1st-order elastic 
method. 

Figure 18 shows the angular acceleration inferred. Obtaining the RMS amplitude for torsion (߱ଷ) 
gives 5. 44 ൈ 10ି଺	 sିଶ. However, according to the earlier paper, the RMS amplitude for the building’s 
basement floor was 1. 76 ൈ 10ି଺	 sିଶ (See Hada and Horike7), Fig. 5). These figures mean that if the 
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building had been constructed in the park where we used the small-size array, the torsion RMS amplitude 
would be approximately three times the figure for the location where the building is actually constructed. 
Similarly, the horizontal component microtremor RMS amplitude in the park was found to be 
approximately three times the horizontal component microtremor RMS amplitude measured on the 
ground surface close to the building. Taking into account differences in microtremor levels between the 
building’s location and the park, this means that it is acceptable to consider the torsion in the building’s 
basement floor to be rotational inputs. This discussion lacks rigor, but the rotation components inferred 
from the microtremors in the basement floor can be considered to provide indirect evidence of being 
due to rotation components in the ground. 

There are plans to publish the software created for the purposes of this study (nth-order elastic 
method and nth-order rigid method). Potential users are invited to contact the authors. 
 

 
Fig. 18 Three-component angular acceleration inferred by the 1st-order elastic method using 

differential motion data from observation sites in the building’s basement zone 
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