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ABSTRACT: Frequency independent stress–strain relationships for the complex moduli 
used in a seismic response analysis of ground are discussed. In addition, a new complex 
modulus for the seismic response analysis of ground, named YAS (Yoshida–Adachi–
Sorokin) model, is proposed. This model is designed so that the maximum stress and the 
hysteretic absorption energy agree with those of the cyclic shear test. It is shown that the 
complex modulus, in which the maximum stress and the damping ratio agree with the test 
result, is possible only when the damping ratio is less than 0.5. Then, three complex moduli, 
the Sorokin model used in the original SHAKE, the Lysmer model proposed to improve 
Sorokin model and used widely in the equivalent linear method, and the YAS model, are 
compared and discussed. The obtained conclusions are as follows. The Sorokin model 
overestimates the maximum shear stress. The Lysmer model gives the same maximum 
stress as the cyclic shear test result, but it underestimates the hysteretic absorption energy. 
Underestimation of the energy absorption is less than 5% for damping ratio less than 0.3 
which is the maximum important damping ratio in practical use. 
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1. INTRODUCTION

The computer program SHAKE1) developed by Schnabel et al. is still widely used in the seismic response 
analysis of ground. In SHAKE, stress–strain relationships that have hysteretic characteristics are 
linearized by introducing a complex modulus and solving the equation of motion in the frequency domain. 
A separation of variables method is applied to the governing equation on ground displacements expressed 
as a function of time and space, and the solutions in each frequency are summed up to obtain the solution 
under nonstationary earthquake motion input. 

Stress–strain relationships are represented by a complex number in the complex modulus method. This 
model absorbs energy caused by the hysteretic behavior (hysteretic absorption energy, hereafter) by the 
phase difference between the real and imaginary parts; the absorbed energy is set equal to the absorbed 
energy by the nonlinear behavior of soil. Lysmer, one of the developers of SHAKE, proposed a new 
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complex modulus from the analysis of a single-degree-of-freedom (SDOF) system subjected to a 
sinusoidal loading2). He showed that the displacements by using the complex modulus of SHAKE and by 
using the velocity proportional damping do not agree, and the proposed complex modulus gives the same 
displacements. Since Lysmer proposed to replace the complex modulus in SHAKE with the complex 
modulus he proposed, many computer programs such as SHAKE913), the two-dimensional computer 
program FLUSH4), the improved equivalent linear method DYNEQ5), etc. use this complex modulus. 

Lysmer's discussion is based on the SDOF system, but the mechanical properties as a complex modulus 
to be used in the analysis of the seismic response analysis of ground is not discussed. In this paper, we 
propose a new complex modulus named YAS (Yoshida–Adachi–Sorokin) model. Then mechanical 
properties of the Sorokin model (complex modulus in the original SHAKE), the Lysmer model (complex 
modulus proposed by Lysmer), and the YAS model are made clear. 

2. SHAKE AND SOROKIN MODEL

Expressions of the real numbers and the complex numbers are distinguished in this paper; a complex 
number is expressed by putting an overline. For example, let γ  denote a complex number, then γ is the 
real part of γ , i.e., Re( )γ γ= . 

Although it is not written in the manual of SHAKE1), the complex modulus used in SHAKE is the 
Sorokin model, which is the complex expression of the Voigt model. Therefore, the Sorokin model is 
explained at first, then the relationship with SHAKE is discussed. 

2.1 Complex modulus by the Sorokin model 

The shape of the stress–strain relationships obtained by the cyclic shear test is a spindle shape as typically 
shown in Fig. 1(a). It is characterized by the secant shear modulus G and the hysteretic absorption energy 
ΔW. They change depending on the strain amplitude γ0, but they are supposed not to depend on the loading 
frequency. Among them, the hysteretic absorption energy is usually represented as the damping ratio h, 
which is a dimensionless expression of the absorbed energy defined as the ratio of ΔW to the strain energy 
W, i.e. 
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Thus, the result of the cyclic shear test is expressed as 0G γ−  and 0h γ−  relationships. In practical 
use, however, since the shear strain is usually expressed as γ, they are usually expressed as G γ−  and 
h γ−  relationships. 

The Voigt model, a mechanical model by connecting a spring and a dashpot in parallel, is employed to 
express the stress–strain relationships such as Fig. 1(a). The stress–strain relationship is expressed as 

G Cτ γ γ= +   (2)

where C denotes damping coefficient, τ and γ denote stress and strain, respectively, and dot denotes time 
derivative. 

We consider the steady-state vibration (harmonic vibration), where the shear strain is defined as 

0 cos tγ γ ω=  or 0cos /tω γ γ=  (3)

where ω denotes circular frequency. Substitution of this equation into Eq. (2) and using the well-known 
relationship 2 0.5sin (1 cos )t tω ω= ± − , we obtain 

2 2
0 0 0cos sinG t C t G Cτ γ ω γ ω ω γ ω γ γ= − = ± −  (4)

Equation (4) is the stress–strain relationships of the Voigt model. Since this equation includes circular 
frequency ω, the stress–strain relationships in Eq. (4) are frequency dependent. Next, we consider that the 
dashpot has frequency-dependent nature and define a new parameter β as 

2C Gω β=  or 2 /C Gβ ω=  (5)

Then the frequency-independent stress–strain relationships are obtained from Eq. (4) as 

2 2
02G Gτ γ β γ γ= ± −  (6)

The first term of this model is an elastic relation that comes from the spring of the Voigt model, and the 
second term becomes a shape of the ellipse that comes from the dashpot. The double sign corresponds to 
the upper and lower half of the ellipse. 

The hysteretic absorption energy ΔWV, i.e., the area of the ellipse of the stress–strain relationships in 
Eq. (6) becomes 

( ) ( ){ }0

0

2 2 2 2 2
0 0 02 2 2VW G G G G d G

γ

γ
γ β γ γ γ β γ γ γ β πγ

−
Δ = + − − − − = (7)

Here, the subscript V of ΔWV indicates the Voigt model. Assuming that ΔWV is equal to the hysteretic 
absorption energy ΔW, we obtain 

hβ = (8)

- 15 -



This means that parameter β becomes equal to the damping constant h. However, this relation does not 
always hold in the models shown below. Therefore, we distinguish between the material damping constant 
β defined by Eq. (5) and the damping ratio h defined in Eq. (1a). This is discussed in section 6.1 in detail.

Sorokin gives the strain in Eq. (3) as a complex number in Eq. (9) and expresses the stress–strain
relationships as given in Eq. (10)6). 

0
i te ωγ γ=  (9)

G Cτ γ γ= +   (10) 

The following stress–strain relationships are obtained by substituting Eq. (9) into Eq. (10) and by using 
the relationships in Eq. (5), 

*
0(1 2 ) i t

SG i e Gωτ β γ γ= + =  (11) 

where 

* (1 2 )SG G iβ= +  (12) 

is called a complex modulus1. The asterisk * is not necessary for the definition because the overline, which 
indicates a complex number, is put on Gs. However, since * is used in many technical papers, it is also 
used in this paper for convenience. The stress–strain relationships that have hysteretic damping can be 
expressed as a linear equation in Eq. (11). The Voigt model is used in order to drive Eq. (11), but this 
equation can be obtained from the Maxwell model, a model connecting a spring and a dashpot in series, 
by assuming that h2 is sufficiently small compared with unity and can be neglected7). 

The frequency-independent stiffness obtained by introducing the complex stresses and the strains is 
called the Sorokin's hypothesis or Sorokin's damping (e.g., Konishi et al.8) and Hricko9)). Thus this 
complex modulus is called the Sorokin model in this paper; the subscript S in Eqs. (11) and (12) indicates 
that this complex modulus is the Sorokin model. 

The following stress–strain relationships are obtained by retrieving the real part of Eq. (11) 

2
0 0(cos 2 sin ) 1 4 cos( )

tan 2
G t t G tτ γ ω β ω γ β ω φ
φ β

= − = + +
=

 (13a, b) 

This equation is equivalent to Eq. (6), although the expressions are different. 
The hysteretic absorption energy ΔWS under the shear strain amplitude γ0 is evaluated by the same 

procedure with Eq. (7) as 

2
02SW GβπγΔ = (14) 

Then, ΔWS is equal to ΔWV in Eq. (7), and thus is equal to the hysteretic absorption energy in Fig. 1(a). 

1 The damping ratio h is frequently used instead of the material damping constant β in Eq. (12) in many textbooks 
and technical papers. This is possible because Eq. (8) holds for the Voigt model and the Sorokin model. In the 
models shown later, however, β and h are strictly distinguished; they are defined in Eqs. (5) and (1a), respectively, 
and are different quantities.  
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2.2 Method by SHAKE 

The computer program SHAKE1) deals with the one-dimensional ground. The equation of motion is 
written as 

2 2 3

2 2 2
u u uG C

t z t z
ρ ∂ ∂ ∂= +

∂ ∂ ∂ ∂
(15) 

where ρ denotes density and C denotes damping coefficient. Displacement u  is a function with respect 
to both time and space; therefore, it is written as ( , )u u z t=  where z denotes the coordinate axis directing 
vertical downward. In order to solve this partial differential equation, the variable separation method is 
employed such as 

( , ) ( ) i tu z t U z e ω=  (16) 

Then, Eq. (15) yields2) 

( )
2

2
2 ( )d UG i C U z

dz
ω ρω+ = −  (17) 

The frequency-independent equation is obtained by using Eq. (5) and by substituting the complex modulus 
*
SG  in Eq. (12). 
Here, Eq. (15) is derived by the following procedure. The stress–strain relationship is shown in Eq (2). 

Substitution of Eq. (5) and the strain–displacement relationship /u zγ = ∂ ∂  into this equation, we obtain 

22u G uG
z t z

βτ
ω

∂ ∂= +
∂ ∂ ∂

(18) 

On the other hand, the equation of motion in the horizontal direction of the one-dimensional ground is as 
follows, 

2

2
u

z t
∂τ ∂ρ
∂ ∂

= (19) 

Equation (15) is obtained by substituting Eq. (18) after partial differentiation with respect to z into Eq. 
(19). Thus, it becomes clear that SHAKE uses the Sorokin model. 

2 The minus sign on the right side of Eq. (17) is not shown in the manual of SHAKE1), but it is not correct. 
However, the final equation is correct because their second mistake cancels this error; they set the square of 
the imaginary unit equal to 1 instead of −1. 
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3. YAS MODEL

The maximum shear stress under the cyclic shear test with shear strain amplitude 0γ  is 0 0Gτ γ= . On 
the other hand, the maximum shear stress τmax of the Sorokin model is calculated from the stress–strain 
relationships in Eq. (13a), which result in 

2 2
0 01 4 1 4max G h hτ γ τ= + = + (20) 

The maximum shear stress is 21 4h+  times larger than that of the laboratory test. It is noted that β is 
used in Eq. (13a), but h is used in this equation by using the relation in Eq. (8). 

A larger evaluation of the maximum shear stress leads to a larger evaluation of the maximum 
acceleration (e.g., Yoshida10)). Therefore, a new complex modulus that results in the maximum shear 
stress that is the same as that of the laboratory test 0 0Gτ γ=  is examined. 

The stiffness of the elastic part (proportional to strain) of the Sorokin model is the same as the secant 
modulus G obtained in the laboratory test, but, as shown in Fig. 1(b), the elastic stiffness becomes smaller 
than G when the maximum shear stress is set as 0τ . This reduced stiffness is denoted as Gr, then Eq. (12)
is re-written as 

* 2Y rG G ihG= +  (21) 

The subscript Y in the complex modulus is used to distinguish it from the other models. 
As can be seen from Eq. (7), the hysteretic absorption energy resulted from the stress–strain 

relationships of the complex modulus are controlled only by β. Since the YAS model and the Sorokin 
model use the same imaginary part h β= , the hysteretic absorption energy YWΔ  is equal to SWΔ , and 
is expressed as 

2
02Y SW W Ghπ γΔ = Δ = (22) 

Naturally, this hysteretic absorption energy is equal to that of the laboratory test WΔ . 
The complex stress τ  under the complex strain γ  becomes 

*
0( 2 ) i t

Y rG G iGh e ωτ γ γ= = +  (23) 

The stress–strain relationships by the YAS model are calculated as the real part of this equation, resulting 
in 

( ) 2 2 2
0 0Re( ) cos 2 sin 4 cos( )

tan 2 /
r r

r

G t Gh t G G h t
Gh G

τ τ γ ω ω γ ω φ
φ

= = − = + +
=

(24a, b) 

In order to set the maximum shear stress 0 0Gτ γ=  in this equation, it is necessary that
2 2 24rG G G h= + . Then the real part rG  of the YAS model yields 

21 4rG h G= − (25) 
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The final form of the YAS model is obtained by substituting this equation into Eq. (21) as 

( )* 21 4 2YG G h ih= − + (26) 

Then the stress–strain relationships yield 

( )2
0 0

2

1 4 cos 2 sin cos( )

2tan
1 4

G h t h t G t

h
h

τ γ ω ω γ ω φ

φ

= − − = +

=
−

(27a, b) 

Both the maximum stress and the hysteretic absorption energy (or damping ratio) in the YAS model agree 
with those of the laboratory test. 

Stress–strain relationships obtained by this model are shown in Fig. 2 with h as parameters. The real 
part of the complex modulus becomes 0 at 0.5h =  (50%), at which the hysteresis curve becomes a 
complete circle. This indicates that the complex modulus that gives the same maximum shear stress and 
hysteretic absorption energy as those in the laboratory test is possible up to 0.5h = . 

4. LYSMER MODEL

Lysmer2) proposed a new complex modulus by focusing on the SDOF system subjected to harmonic 
excitation. This model is called Lysmer model in this paper. In this chapter, behaviors of the SDOF system 
are compared following the proposal by Lysmer, and their mechanical properties are discussed.  

4.1 Response of SDOF system and Lysmer model 

The behavior of the SDOF system that Lysmer discussed is first examined following the procedure by 
Lysmer. The equation of motion of the SDOF system is expressed by using mass m, spring constant k, 
and damping coefficient C as 

Fig. 2 Damping ratio dependency of stress–strain relationships of YAS model 
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 i tmu Cu ku e ω+ + =   (28) 

where u  denotes displacement of the mass. The natural circular frequency and the critical damping 
constant β1 of this system are 0 /k mω =  and 

 12 C
mk

β = , (29) 

respectively. Since it is noted that the parameter β1 defined in Eq. (29) is different from β defined in Eq. 
(5), subscript 1 is used to distinguish this from β. The steady-state solution of Eq. (28) becomes as follows.  

 2 2 2
0 1 0 1

1 1
2 1 2

i t i te eu
i m i k

ω ω

ω ω β ωω α β α
= =

− + − +
 (30) 

where 0/α ω ω=  is a tuning ratio. The displacement response is obtained from the real part of u , 
resulting in 

 1
22 2 2

1

2cos( ) , tan
1(1 ) (2 )

tu
k

αβω φ φ
αα αβ

−= =
−− +

 (31a, b) 

where φ denotes the angle of phase lag. This model is called the Voigt model3 in this paper. 
Next, the same problem is solved by using the Sorokin model. The equation of motion is written as 

follows by replacing the G in the Sorokin complex modulus with the spring constant k.  

 
*

*
1(1 2 )

i tmu k u e
k k i

ω

β
+ =

= +


 (32a, b) 

The steady-state solution of this equation of motion is given as 

 2 2 2
0 1 0

1
2

i teu
i m

ω

ω ω β ω
=

− +
 (33) 

The displacement response is obtained by taking the real part of Eq. (33), resulting in 

 1
22 2 2

1

21 cos( ), tan
1(1 ) (2 )

u t
k

βω φ φ
αα β

= − =
−− +

 (34a, b) 

This solution is different from Eq. (31). Then Lysmer proposed a new complex modulus2). 

 
3 It is noted that we do not discuss the Voigt model itself in this section, but discuss a SDOF system in which the 
Voigt model is used for the spring. The Lysmer model and the YAS model are used in the same way. 
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 * 2 2
1 1 1(1 2 2 1 )Lk k iβ β β= − + −  (35) 

The following displacement is obtained by solving the equation of motion using this complex modulus as 

 
2

1 1
2 22 2 2

11

2 1cos( ) , tan
1 2(1 ) (2 )

tu
k

β βω φ φ
α βα αβ

−−= =
− −− +

 (36a, b) 

We can see that the amplitudes are the same from the comparison of Eqs. (31a) and (36a). However, from 
Eqs. (31b) and (36b), the angles of phase lag are different, therefore, the load cosωt displacement u 
relationships (restoring-force characteristics) are different. The same solution is obtained by Udaka et 
al.11). They only pointed out that the phase difference becomes 2β1 rad at the maximum, but the discussion 
shown in the following was not made. 

Equation (35) appears without any explanation in Lysmer's proposal. Kramer12) pointed out that Eq. 
(35) is a choice for the displacement that equals to that of Eq. (31a). He also described that, for the usual 
small damping ratio considered in earthquake engineering problems, the 2

1β  terms can be neglected 
resulting in Eq. (32a). We try a new discussion on this equation. 

At first, the complex modulus is set as * ( )r ik k k ik= +  and substituted into Eq. (32a) to obtain the 
displacement. The condition that this displacement equals to that of Eq. (31a) yields 

 2 2 2 2 2 2
11 2 4 2r r ik k kα α β α− + = − +  (37) 

This means that there are countless complex moduli that make the displacement the same as Eq. (31a). 
For example, we can obtain 2 0.5

1 12 (1 2 )ik β β= −  by substituting 2
11 2rk β= − . For another example, let 

set 12ik β=  in order to obtain the same hysteretic absorption energy or damping ratio, we obtain 

 2 2 2 2
1(1 )(1 4 )rk α α α β= ± − − −  (38) 

Since the tuning ratio α remains in the real part of the complex modulus, the resulting stress–strain 
relationships are frequency dependent. Possibly, Eq. (35) is the only complex modulus that does not 
include the tuning ratio. In addition, it is clear that the complex modulus that agrees with the Voigt model 
in terms of both the maximum displacement and the hysteretic absorption energy is impossible by the 
Lysmer model. 

For comparison purpose, the response of the YAS model is calculated by using the same procedure, 
resulting in 

 1
2 22 2 2 2

11 1

2cos( ) , tan
1 4( 1 4 ) (2 )

tu
k

βω φ φ
β αβ α β

−= =
  − −− − + 
 

 (39a, b) 

Here, as in the other models, G and h are replaced by k and β1. 
The displacement time history and the restoring force characteristics of the four models are compared 

in Fig. 3. Here, displacement is expressed as uk (Modified displacement) by multiplying with the spring 
constant k. As discussed in the preceding section, the displacements of the Lysmer model and the Voigt 
model are the same, but since their angles of phase lag are different from each other, their restoring force 
characteristics are different. In this sense, Lysmer's suggestion that the displacement is to be the same as 
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that of the Voigt model does not seem to be an important issue. In addition, the discussion by Lysmer is 
made on a SDOF system, and there is no explanation of how this relates to the shear behavior for the 
seismic response of a ground. This is discussed in detail in section 6.1, and the characteristics and 
problems of the SDOF system are discussed in section 5.2. 

4.2 Mechanical characteristics of Lysmer model 

The complex spring k* proposed by Lysmer is shown in Eq. (35), and β1 is called a fraction of critical 
damping which is defined in Eq. (29). 

After the discussion in the previous section, Lysmer extended the discussion into the multiple-degree-
of-freedom system by a finite element method. He described "in order to get good agreement between a 
modal analysis and a complex response with the complex moduli one must choose the following 
relationship (Eq. (40)) between the real modulus G which is used in the modal analysis and the complex 
modulus G* used in the complex response analysis" 

 * 2 2
1 1 1(1 2 2 1 )LG G iβ β β= − + −  (40) 

where G is the stiffness obtained in the laboratory test. He also described that the Sorokin model can be 
used when the damping ratio is small, and he showed the complex moduli for S- and P-wave velocities. 
However, he replaced β1 in Eq. (5) with β in Eq. (5), i.e., 

 * 2 2(1 2 2 1 )LG G iβ β β= − + −  (41) 

without explanation. Since the complex modulus is used in the analysis of the ground, we call this model 
the Lysmer model. The complex stress τ  against the complex strain γ  (complex stress–strain 
relationships) and the stress–strain relationships as the real part of the complex stress–strain relationships 
become as follows. 

 { }
* 2 2

0

2 2 2 2
0 0

2

2

(1 2 2 1 )(cos sin )

(1 2 ) 2 1 cos( )

2 1tan
1 2

LG G i t i t

G G t

τ γ γ β β β ω ω

τ β γ β β γ γ γ ω φ

β βφ
β

= = − + − +

= − ± − − = +

−
=

−

 (42a, b, c) 

 
 (a) Displacement time history (b) Load–displacement relationships  

Fig. 3 Comparison of the behavior of SDOF system 
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Although it is not written in Lysmer's proposal2), the maximum stress of the Lysmer model is Gγ0, which 
is the same maximum stress in the laboratory test. This is a very important mechanical characteristic of 
the Lysmer model. 

The hysteretic absorption energy ΔWL is calculated from Eq. (42b) as 

 2 2
02 1LW Gβ γ π βΔ = −  (43) 

The relationships between the material damping constant β and the damping ratio h is obtained by 
substituting ΔWL into Eq. (1a) as 

 
2 2

20
2
0

2 11 1
4 / 2

G
h

G
β γ π β β β

π γ
−

= = −  (44) 

The material damping constant β is obtained as 

 
21 1 4

2
hβ − −=  (45) 

The relationships between β and h are shown in Fig. 4. The term in the root on the right-hand side 
becomes negative when 0.5h > . Therefore, the conversion from the damping ratio to the material 
damping constant is possible only when 0.5h ≤  ( 1/ 2β ≤ ). In the current practice, the material 
damping constant β is used instead of the damping ratio h, but it results in smaller hysteretic absorption 
energy.  

By substitution of Eq. (41) into Eq. (45) in order to express the Lysmer model as a function of the 
damping ratio h, we obtain 

 * 2 2 2(1 2 2 1 ) ( 1 4 2 )LG G i G h ihβ β β= − + − = − +  (46) 

The right-hand side of this equation is the same as the YAS model; the Lysmer model yields the YAS 
model by using the conversion in Eq. (45). 

5. DISCUSSION OF APPLICABILITY OF LYSMER MODEL 

We discuss the applicability of the Lysmer model from two points of view. 

5.1 Applicability of Lysmer model 

When Christian et al. introduced the Lysmer model13), they pointed out the following. Since the difference 
between the Sorokin model and the Lysmer model are small when 0.3β < , the use of the Sorokin model 
is suggested. They also raised a question for the equivalent linear method using a complex modulus for β 
greater than 0.3 because of the lack of test data. Moreover, the imaginary part of the Sorokin model 
monotonically increases with β, but the Lysmer model has a problem that the real part can become 
negative and *G G= −  when 1β = . Considering these points, they felt that the Sorokin model is 
enough for practical use. 
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When one of the authors collected hundreds of cyclic shear test data14), almost all maximum damping 
ratios satisfied 0.3h < . Therefore, the suggestion by Christian et al. seems rational. However, they did 
not discuss the amount of error; they just described that the error is small. This is discussed in the next 
chapter.  

Another issue that Christian et al. pointed out is the behavior of the Lysmer model at large β. They just 
pointed out an inconvenient point when 1β = . This is discussed in detail here. 

The relationships of the real and imaginary parts of both the Sorokin and the Lysmer models and the 
material damping constant β are shown in Fig. 5. The real part (normalized by G in the figure) is constant 
and the imaginary part is a straight line that increases with β. On the other hand, in the case of the Lysmer 
model, the real part decreases with β and becomes zero at 1/ 2β = . The imaginary part is close to that 
of the Sorokin model when β is small, but it separates from that of the Sorokin model as β increases; the 
imaginary part has an extreme value 1 at 1/ 2β =  and becomes zero at 1β = . 

The stress (normalized by Gγ0)–strain (normalized by γ0) relationships are shown in Fig. 6 to see the 
effect of β. The stress–strain relationships are elliptic in shape when β is small, and transforms to a circle 
as β increases. It becomes a complete circle at 1/ 2β =  because the real part becomes zero. When β 
increases further, they again become elliptic in shape, but the slope angle becomes negative when 

1/ 2β > , whereas it is positive when 1/ 2β < . They become a straight line at 1β = . Thus we can 
conclude that the applicable range of the Lysmer model is 1/ 2β ≤ . 

 
Fig. 5 Material damping constant dependency 

of complex moduli 
 

Fig. 6 Stress–strain curves of Lysmer model 
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Fig. 4 Relationships between material damping constant and damping ratio in Lysmer model 
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On the other hand, Kramer12) pointed out, as described in section 4.1, that the difference of the angle of 
phase lag can be approximated by 2 /(1 )β α+  when β is small so that 2β  is negligible. He also described 
that the motion with viscous damping can be expressed by a non-damped system (velocity proportional 
term is not included in Eq. (32a)) using the complex modulus. He also mentioned that this can be done 
only for the harmonic vibration problem. Although the discussion by Kramer is qualitative and no 
quantitative discussion was made, he seems to consider that the Sorokin model is sufficient. 

5.2 Vibration problem under harmonic external load 

It is usual to use a damped free vibration system in the discussion of the damping ratio and the critical 
damping ratio. On the other hand, the amplification ratio is usually of interest when dealing with harmonic 
excitation. However, we change our focus and discuss the relationships between the restoring force 
characteristics and the damping ratio. 

The real part of the equation of motion of the SDOF system, shown in Eq. (28), is 

cosmu Cu ku tω+ + =   (47) 

The restoring force of this system Q is obtained from Eq. (47) by using Eq. (29) and the relation 
0 /k mω =  as

1

0

2cos kQ mu t Cu ku u kuβω
ω

= − + = + = +   (48) 

The circular frequency of the displacement equals to that of the excitation under the steady-state. 

0 cos( )u u tω φ= − (49) 

where φ denotes an angle of phase lag from the external load. Substituting this equation into Eq. (48) and, 
using 2sin( ) 1 cos ( )t tω φ ω φ− = ± − − , we obtain 

2 2
1 0

0

2Q ku k u uωβ
ω

= − (50) 

The hysteretic absorption energy and strain energy are calculated from the Q–u relationships as 

0

0

2 2 2 2 2
1 0 1 0 1 0

0 0 0

2
0

2 2 2

1
2

u

u
W ku k u u ku k u u du k u

W ku

ω ω ωβ β β π
ω ω ω−

     Δ = + − − − − =    
     

=


 (51) 

Therefore, the damping ratio h yields 

1
0

1
4

Wh
W

ωβ
π ω

Δ= = (52) 
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This equation indicates that 1 hβ =  only when 0ω ω= , i.e., the circular frequency of the excitation 
equals the natural circular frequency of the system, which holds in the steady-state vibration under the 
harmonic excitation. Thus the attempt by Lysmer, the comparison between the viscous damping and the 
complex modulus of the SDOF system, is not considered to be mechanically significant. 

The difference between the vibration problem and the analysis of the ground is discussed in section 6.1. 

6. DISCUSSION

6.1 Vibration theory and complex modulus for analysis of ground 

In many books or technical papers, β1 defined in Eq. (29) is called the critical damping ratio or the fraction 
of critical damping and is denoted as the damping ratio h instead of β1. This comes because the damping 
coefficient corresponding to β1 is a ratio of the viscous coefficient 2C mk=  under which the system 
does not vibrate in the free vibration problem of the SDOF system. On the other hand, in the SDOF system 
with nonlinear characteristics, the hysteretic absorption energy is considered to express damping and it 
has been tried to express this by using β1. When β1 is sufficiently small, 1h β=  by using Eq. (1a) (e.g., 
Tajimi15)). Therefore, as explained in footnote 1, h and β1 have not been differentiated, and have been 
used in the same meaning. 

However, in the analysis of grounds, the definition of β1 in Eq. (29) does not make sense because it 
includes mass m; h defined in Eq. (1a) is used as the output of the cyclic shear test. This h is called the 
damping constant, damping ratio16), hysteretic damping rate17), etc. It should be converted to the stress–
strain relationships to conduct the seismic response analysis. 

The material damping constant β defined in Eq. (5) is called the "critical damping ratio" in SHAKE1). 
It seems that they adopted the terminology the terminology from the vibration theory of the SDOF system 
because SHAKE uses the Sorokin model in which hβ = . However, the β used in SHAKE as defined in 
Eq. (5) is different from the critical damping ratio in the SODF system, Eq. (29), but there is no 
explanation in SHAKE1). 

Lysmer2) called β1 the fraction of critical damping, which also seems to be the same idea with SHAKE. 
However, as explained in section 4.2, hβ ≠ . Therefore, the terminology is more impossible than SHAKE. 

We introduced the parameter β in Eq. (5) by focusing on the stress–strain relationships that do not have 
frequency dependence. This definition is quite different from the definition in Eq. (29). We cannot find 
the relevant technical terms on this parameter in past research. As mentioned above, it is called a critical 
damping ratio, but this does not seem to be a relevant term. Thus we named it a material damping constant. 
Definition of the complex modulus for the seismic ground response analysis is possible apart from the 
discussion of the vibration of a SDOF system by using this parameter to the complex modulus to express 
stress–strain relationships of soil. 

Since the result of the laboratory test is expressed as the damping ratio h, it is better to use h to express 
the stress–strain relationships. The Sorokin model and the YAS model satisfy this requirement because 

hβ = . On the other hand, since hβ ≠  in the Lysmer model, β cannot be used instead of h. However, it
becomes possible to use h by using the conversion in Eq. (45), in which case the Lysmer model becomes
the same as the YAS model as shown in 4.2. If β is used instead of h in the Lysmer model, the damping
ratio or the hysteretic absorption energy is about 5 % underestimated when 0.3β = . This means that the
error of the hysteretic absorption energy of the Lysmer model is usually less than 5 %. If this error is
acceptable, the use of the Lysmer model is possible, but in order to eliminate the error, β should be
converted to h by using Eq. (45) in the Lysmer model.

6.2 Comparison of complex moduli 

Three complex moduli, the Sorokin model *
SG , the Lysmer model *

LG , and the YAS model *
YG , are 

compared in this section. 
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Stress–strain relationships of the three complex moduli are compared in Fig. 7 with the material 
damping constants 0.1, 0.2, and 0.3. Here, the vertical axes are normalized by γ0 and the horizontal axes 
are normalized by Gγ0. 

As pointed out in chapter 3, the maximum shear stress ratio (ratio of the maximum shear stress to the 
maximum shear stress Gγ0 of the cyclic shear stress result) is greater than 1 in the Sorokin model. On the 
other hand, those in the Lysmer model and the YAS model are just 1. 

The hysteresis curve of the Lysmer model (Fig. 7(b)) looks thinner than that of the YAS model (Fig. 
7(c)) because, as shown in Eq. (44), h is smaller than β in the Lysmer model. In order to see the difference, 
the hysteretic curves are compared in Fig. 8 at the same β and h values in the Lysmer model. The 
difference is ridiculously small when the values are 0.1 and 0.2. A slight difference is seen when 0.3β = ; 
as shown in the preceding section, h is about 5% smaller when 0.3β = . 

The real part and the imaginary part of the complex moduli are shown in Fig. 9 against the damping 
ratio or the material damping constant. Here, the vertical axes are normalized by the secant modulus G. 
The horizontal axes are shown up to 0.8 to see the characteristics of the model well although the practically 
important damping ratio is less than about 0.3. It is also noted that the curves of the Lysmer model are the 
same as those shown in Fig. 5. The difference between the Lysmer model and the YAS model is small in 
the practically important range of the damping ratio ( 0.3h ≤ ), but it becomes large as the damping ratio 
becomes larger than 0.4. 

As shown in Fig. 9(a), the real part is constant in the Sorokin model, but the real parts become smaller 
as h or β in the other models. In addition, the real parts become zero when 0.5h =  in the YAS model 
and 1/ 2β =  in the Lysmer model. The hysteresis curve becomes a circle, and this is the applicable 
range of the model. The applicable range becomes the same for both models when using the conversion 
in Eq. (44) or Eq. (45). 

The imaginary part of the Sorokin model and YAS model are the same, therefore the damping ratio of 
these models is the same because, as can be seen in Eq. (14) or Eq. (22), the hysteretic absorption energy 
is determined by the imaginary part of the complex modulus. On the other hand, the imaginary part is 
smaller in the Lysmer model than that of the other two models, which indicates that the hysteretic 
absorption of the Lysmer model is smaller than that of the other two models when the material damping 
constant β is the same. However, as can be seen in Fig. 7, there is no significant difference in the hysteretic 
curves. 

7. CONCLUSION

A new complex modulus, named YSA (Yoshida–Adachi–Sorokin) model, for the cyclic stress–strain 
relationships of the soil, gives the same maximum stress and the damping ratio as the ones by the cyclic 
shear test. Then three complex moduli, the Sorokin model used in the original SHAKE1), the Lysmer 

(a) Sorokin model (b) Lysmer model (c) YAS model
Fig. 7 Comparison of stress–strain relationships 
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model2) proposed to improve the Sorokin model, and the YAS model proposed in this paper are compared 
and discussed. Finally, we obtained the following conclusions. 

(1) A new parameter β named the material damping constant is defined. This parameter is different
from the damping ratio (or the critical damping ratio which is defined as β1 in this paper) used in
the analysis of a SDOF system. The former is the characteristic value of the material and the latter
is the characteristic value of the system.

(2) The Sorokin model overestimates the maximum stress by 21 4h+  times larger than the one in
the laboratory test.

(3) The YAS model is applicable within the damping ratio h of 0.5 or less. This means that the complex
modulus whereby both the maximum stress and the hysteretic absorption energy agree with those
by the laboratory test is possible only when 0.5h ≤ .

(4) The complex spring constant proposed by Lysmer was proposed to get the same displacement
amplitude with a SDOF system with viscous damping under harmonic loading. However, although
the displacement is the same, the restoring-force characteristics are different. In addition, he
replaced the critical damping ratio with the material damping constant to use in the analysis of the
ground, but the mechanical background was not shown.

(5) The maximum stress of the Lysmer model is the same as the one in the laboratory test.

Fig. 8 Comparison of hysteretic curve when h and β are same value 

(a) Real part of complex modulus (b) Imaginary part of complex modulus
Fig. 9 Damping ratio h and material damping constant β dependency of complex moduli 
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(6) The material damping constant β is used instead of the damping ratio h in the Lysmer model, which
underestimates the hysteretic absorption energy because the damping ratio calculated by using β 
instead of h is smaller than h.

(7) An equation is derived to obtain the damping ratio h from the material damping constant β so that
the hysteretic absorption energy is the same as the one in the laboratory test. By using this equation,
the Lysmer model yields the YAS model.

(8) The difference in the hysteretic absorption energy is small between the Lysmer model and the YAS
model within the practically important range of the damping ratio 0.3h ≤ . The error is about 5 %
even at 0.3h = . If this difference is not a problem, the use of the Lysmer model may be possible,
but the use of the YAS model is suggested because the mechanism is clear and both the maximum
stress and hysteretic absorption energy in the YAS model agree with those of the test.
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