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ABSTRACT: This paper describes a design method for tuned mass dampers (TMDs) that reduce 
seismic responses in reinforced concrete buildings. To reduce the seismic responses to a wide range 
of strong ground motions, displacement-dependent optimal tuning ratios of linear TMDs are 
formulated for nonlinear responses. Performance curve diagrams are proposed using the optimal 
tuning ratios determined by nonlinear time history analyses with various mass ratios and damping 
ratios. These diagrams allow us to visually determine the appropriate TMD under the constraints of 
its mass, damping coefficient, and peak deformation.  

Keywords: Mass damper, Tuning ratio, Nonlinear response, Control performance, 
Time-history analysis 

1. INTRODUCTION

Since the early 2010s, heavy tuned mass dampers (TMDs) have been actively developed to reduce the 
seismic responses of existing tall buildings in Japan1)–3). These seismic rehabilitation measures are 
intended to protect against long-period ground motions. Many researchers have noted that the possible 
future Great Nankai Trough Earthquake would have long-period ground motions that could cause severe 
damage to tall buildings in Japan. Installing TMDs on rooftops is advantageous for buildings with 
limited installation space and has attracted attention from many structural engineers and researchers. A 
heavy TMD can reduce seismic responses to strong ground motions even with far shorter duration than 
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wind disturbance. Advanced TMDs have been studied for additional earthquake protection, including 
multiple TMDs4, building mass dampers5), and displacement dependent TMDs6). Semi-active control 
methods with friction based TMDs7), 8) also fall into this category. Although these advanced technologies 
may permit higher control effects, a conventional passive TMD with linear viscous elements can still 
achieve low-cost seismic rehabilitation without these technologies9). Furthermore, the connections 
between rooftop TMDs and buildings are simpler than those of other dampers installed on several floors. 
In this respect, TMDs are suitable for seismic rehabilitation in countries with insufficient damping 
technology. 

Despite these potential technologies, few studies have addressed the effects of using a TMD with a 
linear viscous damper on reinforced concrete buildings during strong ground motions. A TMD tuned to 
the initial stiffness of the building may have reduced control performance due to the strong nonlinearity 
of processes such as crack formation in the concrete or the yielding of reinforcing bars. This issue has 
motivated the development of advanced TMDs that enhance their robustness to changes in natural 
frequency. In terms of passive control methods, a typical approach involves using multiple TMDs with 
different natural frequencies, which were originally studied to account for stiffness uncertainties. 
Semi-active control methods with variable damping coefficients have also been studied to address 
time-dependent nonlinearity10). However, it is uncertain how the structural properties of a linear TMD 
should be selected to maximize control performance for moderate-to-strong ground motions. Clarifying 
this fundamental problem can advance TMD technologies.  

This paper investigates the control performance of conventional TMDs with linear viscous 
elements for reinforced concrete buildings. The objectives include finding a reasonable TMD stiffness 
for reducing seismic responses to moderate-to-strong ground motions and presenting graphical solutions 
with multiple constraints, including the allowable TMD deformation. In addition, nonlinear time-history 
analyses using a spatial frame model demonstrate the usefulness of the proposed design method. 
 
 
2. ANALYSIS METHODS FOR GENERATING CONTROL PERFORMANCE DIAGRAMS 
 
2.1  Controlled buildings and input ground motions 
 
Consider TMDs installed into reinforced concrete buildings with five, ten, and 14 stories. The TMDs 
mounted on the rooftops have physical properties including mass am , stiffness ak , and damping 
coefficient ac  (Fig. 1). The mass am is normalized by the first effective mass of the building 
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    Fig. 1 Controlled building               Fig. 2 Response spectra for a 5% damping ratio 

Target spectrum 
Response spectra 
 (10 waves) 

Sp
ec

tr
al

 a
cc

el
er

at
io

n 
(m

/s
2 )

  
2

Natural period (s)  

Constant acc. Constant vel. 

RFL 
TMD 

am
ak

ac

RFL 

- 44 -



 

 
 

follows: 

 / eff
a bm M   (1) 

The mass ratio  is assumed to be 0.02 0.1   to ensure appropriate seismic effectiveness. 
Simulated and recorded ground motions were employed to investigate several of the objectives. 

The simulated motions were generated so that their response spectra matched the specified target 
spectrum (Fig. 2). The target spectrum is referred to the class II soils specified in the Japanese Ministry 
of Construction Notification. An amplitude envelope with a duration of 120 s and a random phase angle 
accompanied by Fourier amplitudes generated ten time-history acceleration samples, which gives the 
response spectra shown in Fig. 2. The simulated ground motions were used to generate the control 
performance diagrams shown in Section 4. Subsequently, recorded ground motions were selected to 
demonstrate the TMD control performance for three typical buildings. 

 

2.2  Analysis models 
 
This study employs a two-degree-of-freedom (2-DOF) lumped mass model (Fig. 3). Evaluating the 
control performance requires many time-history analyses, and the 2-DOF model is appropriate because 
of its low numerical cost. By combining a well-known equivalent single-degree-of-freedom (SDOF) 
building and the TMD, 2-DOF systems are presented in a mathematical form involving the 
displacement compatibility. Letting  be the nondimensional value that is computed by a participation 
factor multiplied by the first modal vector element corresponding to the TMD position, an exact 
equation of motion is derived in the following form:  

   ( )b a a gu     MU C C U K U Q U Mr    (2) 

where the vectors and matrices are defined by 
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Fig. 3 Equivalent 2-DOF system for a building 
and TMD    

              
Fig. 4 Envelope curve of an equivalent SDOF 
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using the displacements ,U q , and au as shown in Fig. 3. The symbols Q  and bC  are the restoring 
shear force and damping coefficient of a SDOF building, respectively (Fig. 4). By scaling the stiffness 
and strength shown in Eq. (3), the response error arising from the dimensionality reduction can be 
negligibly small. The errors were confirmed to be within 5% of the original multi-degree-of-freedom 
system if the first mode shape held during an elastic-plastic response9).  

To apply structural properties to Eq. (3), the concrete building was assumed to have ten stories, a 
floor height of 3.0 m, and an inverted triangle mode shape ( 1.5)  . By using the building height 
H (m), the initial natural period 1T (s) was calculated from an empirical formula 1( 0.02 )T H . The ratio 
of the base shear strength yQ  to the building total mass was 0.35. These specific values do not lose 
generality because all the values, including tuning parameters and peak responses, have dimensionless 
forms in the later discussion. In other words, any structural properties are applicable to the results 
obtained from this study. The restoring force Q  follows the Sozen-Takeda degrading rule with a 
trilinear envelope11) where the post-yield stiffness 3K  is 1/100 times the initial stiffness 1K . The inner 
loop unloading stiffness reduction factor is considered 0.4. Non-dimensional parameters yp  and   are 
the normalized stiffness and strength, defined as follows: 

 
1

y
y

K
p

K
 ,   c

y

Q

Q
   (4a, b) 

where yK  is the secant stiffness at a yield point. The symbols cQ  and yQ  are the first and second 
strength points on the envelope, as shown in Fig. 4. Once the initial natural period 1T  was determined, 
the two parameters yp  and   give a unique envelope curve in non-dimensional axes (ductility factor 
versus story shear coefficient).  

Equation (2) is solved by direct time-history analysis with the Newmark  scheme, with an 
incremental time step of 1/1000 s. The overall damping ratio of 0.03 is incorporated into the building as 
proportional type tangent stiffness. The reference frequency was based on the first vibration mode 
without the TMD. 
 

 

3.  TUNING METHOD FOR MODERATE-TO-STRONG GROUND MOTIONS 
 
3.1  Optimal tuning ratio for specific seismic intensity 
 
The tuning parameters contain the mass, stiffness, and damping ratio of the TMD. The optimal stiffness 
and damping ratio are discussed here, and the mass is addressed in Section 4. 

For determining the optimal stiffness ak , the tuning ratio   is determined as follows: 

 a

b





 ,   a

a
a

k

m
   (5a, b) 

where   is defined as the ratio of the eigen circular frequencies for the building b  and for the TMD 

a . If the building responds in its elastic range, the closed form of the optimal tuning ratio only depends 
on the mass ratio. Applying white-noise motion to the building base leads to the following well-known 
formula12):  

 * 1 / 2

1e










,   2    (6a, b) 

Seismic responses over the elastic limit require a modification to Eq. (6) because the equivalent 
natural frequency significantly changes in the controlled building. Kaneko et al.9) proposed the following 
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optimal tuning equation depending on the nonlinearity of the building: 
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where the ductility factor fD  should be evaluated for the building without the TMD. Although this 
equation is based on the secant stiffness at peak displacement, Eq. (8) involves a minor modification. 
The empirical coefficient of 0.5 was identified through numerical optimizations with many nonlinear 
time-history analyses. While the stiffness ratio yp  strongly affects the optimal tuning ratio 

*
p  (Fig. 

5(b)), the difference of 

*
p  in terms of the strength ratio   is negligible (Fig. 5(a)), especially for 

1fD  . Considering typical values used in Japan, only a   of 0.3 was employed in the later results.  
The optimal damping coefficient ac  can be evaluated from the optimal damping ratio ah : 

 2a a a ac m h   (9) 

For elastic responses, the optimal damping ratio that corresponds to Eq. (6) is expressed as12): 
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The optimal damping ratio has approximately the same form as Eq. (10): 

 * *
,a a eh h  (11) 

3.2  Indices of optimal TMDs and some constraints 
With these optimal tuning parameters, control performance was evaluated using the reduction ratio of 
peak displacement: 

 

 

 

 
 
 
 
 
 
 
 
 
          (a) Effect of strength ratio               (b) Effect of stiffness ratio 

Fig. 5 Normalized tuning ratios for nonlinear buildings 
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where 0U   and U are the peak displacement of the uncontrolled and controlled buildings, respectively. 
In Fig. 6, the lower limit of dR  is summarized using a variable TMD stiffness tuned to the evolved fD . 
Nevertheless, the reduction ratio dR  becomes larger as fD  evolves because the uncontrolled buildings 
are gradually damped by hysteretic energy. Furthermore, the actual dR  becomes larger than the lower 
limit because the TMD stiffness cannot be changed.  

Other constraints also reduce control performance. The TMD damping coefficient may require far 
larger values than the optimal value. Its damper stroke is still large compared to the other damped 
structures and may reach its tolerance during strong ground motions. To investigate the damper stroke, 
the normalized deformation of the TMD was defined as follows: 

 ( ) ( ) ( )ad t u t U t  ,  
max ( )

max ( )
t

t

d t

U t
   (13a, b) 

where   is independent of the initial natural period or the building height. For elastic responses, the 
normalized deformation   is accurately estimated by the following expression5): 

  * 1
0.83

2
e 


   (14) 

Figure 7 shows the normalized deformation   during nonlinear responses, which can be approximately 
constant for 1fD  . This assumption suggests selecting a specified   for 1fD   to generate the 
control performance diagrams addressed in Section 4. 
 

 

 

 

 

  

 

 

 

 

Fig. 6 Displacement reduction ratio depending  
on ductility factor 

 

Fig. 7 TMD deformation depending on ductility 
factor

3.3  Practical tuning methods for several seismic intensities 
 
As Eq. (7) implies, the linear TMD tuned to strong ground motions is not optimal for moderate ground 
motions. There exists an inevitable dR  trade-off among different seismic intensities. We thus need to 
select only one reference seismic intensity so that a desirable dR  is achieved over a wide range of fD  
values. This complex tuning can be avoided by an alternative method based on a reasonable criterion 
discussed in the following paragraph. 

Consider the three states of cracking, yielding, and the ultimate state;  ,d cR , ,d yR , and ,d uR denote 
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the minimized reduction ratio at each state, respectively: 

, ( ) ( ; )d c d f cR R D D     at crack formation (15a) 

              , ( ) ( ; 1)d y d fR R D        at yielding (15b) 

                        , ( ) ( ; 2)d u d fR R D       for the ultimate state (15c) 

Apparently, the corresponding optimal tuning ratios are 

* ( )p f cD D  , 

* ( 1)p fD  , and  

* ( 2)p fD  . 
Although these values cannot minimize dR  at other states in a precise sense, time-history analysis 
suggests reasonable tuning. To obtain the constant tuning ratio 

*
p  in Eq. (7), a reference ductility factor 

denoted by ,reffD  must be determined in some way. Figure 8(a) shows that a ,reffD  ranging from 0.5 to 
3.0 makes ,d yR  equal ,d cR , which means that minimizing ,d yR  leads to an approximately minimized 

,d cR . Solving the following equation gives approximately minimized ,d yR  and ,d cR :  

 *
,ref , ,refarg min ( )f d y fD R D   where ,ref0.5 3fD   (16) 

Equation (15b) imposes 

*
,ref 1fD  . As ,d uR  gradually approaches ,d yR  for larger ,reffD  values (Fig. 

8(b)), both  ,d uR  and  ,d yR  become large. Therefore, 1fD   could be a reasonable criterion for 
obtaining the tuning ratio in Eqs. (7) and (8). 
 
 
4.  TMD CONTROL DESIGN USING PERFORMANCE DIAGRAMS 
 
4.1  Performance curves based on nonlinear time-history analysis 
 
In practical engineering, control performance diagrams are useful tools for designing dampers in 
passively controlled buildings. We thus consider performance diagrams along with the critical 
constraints discussed in Section 3.2. The proposed diagrams can avoid time-history analyses with trial 
and error, giving a comprehensive understanding within a design parameter space. The control 
performance diagrams also visualize the relationship between 0( max / max )dR U U  and the normalized 
TMD deformation 0( max / max )dR d U   with variations of the tuning parameters   and ah . 

Consider a standardized acceleration spectrum aS  and standardized velocity spectrum vS . The 
control performance diagram depends on whether the equivalent natural period at peak displacement eqT  
belongs to the region of constant aS  or constant vS  (Fig. 2). Minor variations in the natural period eqT  
do not affect the performance curves. The initial natural period is therefore set to 0.3 s for the constant 
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aS  case and 0.6 s for the constant vS  case. These two properties correspond to the five and ten-story 
buildings, respectively.  

While the mass ratio   and damping ratio ah  are changed continuously, the building and TMD 
deformations obtained by solving Eq. (2) can create the performance curves shown in Fig. 9. Despite the 
assumption of 1fD  , these diagrams are applicable to a wide range of fD  values, as discussed in 
Section 3.2. In each graph, the thick curve at the top of the mesh refers to the optimal damping ratio 

*
ah  

according to each mass ratio. A larger damping ratio than the optimum significantly reduces TMD 
deformation ( dR ) and slightly increases the reduction ratio dR . In contrast, increasing the mass ratio 

  is the only way to reduce dR . To reduce TMD deformation, two methods are available: (1) increase 

  or (2) increase ah . If the TMD mass is to be as small as possible, increasing the damping constant is 
better; the reason for this is that the reduction ratio dR  becomes slightly higher as the TMD deformation 
decreases. However, an excessive damping ratio compared to the optimum significantly worsens control 
performance. The condition 

*
,3a a eh h  is an extreme case, which is depicted by the thick bottom curves 

in Fig. 9. In the range where the mass ratio is small, the change in TMD deformation as mass ratio 
increases is larger than the reduction ratio. As mentioned earlier, this visualization approach allows for 
better understanding of these trends.  
 

4.2  Graphical approach to control design 
 
Under the given structural building properties, a TMD can be designed using the following steps. 
 

 Step 1:  Compute the effective mass 

eff
bM  of the controlled building. Set the constraints involving 

the allowable mass ratio ̂ , damping ratio 
ˆ
ah , and deformation d̂  for the TMD. 

 Step 2:  Evaluate the stiffness ratio yp  and strength ratio  . The direct method uses a push-over 
analysis of the frame model to obtain its envelope curve. The obtained round-shaped 
envelope is approximately replaced with a trilinear shape to obtain yp  and  . Alternatively, 
these analyses can be avoided, and these ratios can be assumed to be 0.3. 

 Step 3: Obtain the inter-story drift angle (IDA) and the peak rooftop displacement 0maxU  by using 
the capacity spectrum method. Calculate the maximum allowable deformation ratio ̂  from 

0
ˆ / maxd U . 

  Step 4:  Decide on the required reduction ratio req dR  so that the above IDA decreases below 
tolerance, such as IDA 1/100 rad. 

 Step 5: Draw the allowable region defined by req dR  and req
ˆ

dR   along with the constraints of the 
mass ratio ̂  and damping ratio 

ˆ
ah . Then, determine the design point inside the allowable 

region. For mid-rise buildings, the constraint 
ˆ
ah  may be inactive, where ah  can be the 

optimum according to Eq. (10). If the allowable region does not exist in the control 
performance diagram, some constraints should be relaxed until the TMD properties can be 
found. Otherwise, consider another vibration control method besides a TMD. 

 Step 6:  Compute the optimal tuning ratio  

*
p  from Eq. (7) using    and structural properties 

including  and yp . 

 Step 7:  Obtain the TMD mass am  using the determined   and the effective mass 

eff
bM . Then, get 

the TMD properties ak  and ac  from Eq. (5) and Eq. (9). 

Step 8: Conduct time-history analysis using the TMD properties and check whether the reduction 
ratio dR  and TMD deformation d  are acceptable. If dR  is insufficient, the mass am  

should be increased; if d  does not satisfy the constraint, the damping coefficient ac  should 
be increased. Then, perform time history analysis again. 
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(a) Constant spectral acceleration domain          (b) Constant spectral velocity domain 

Fig. 9 Control performance diagrams 
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5.  CONTROL DESIGN EXAMPLES FOR MID-TO-HIGH RISE BUILDINGS 
 
5.1  Controlled buildings and ground motions 
 
We demonstrate our methods with three mid-to-high rise buildings with five, ten, and 14 stories. These 
buildings are tower housing buildings compiled in the database of the Japan Building Disaster 
Prevention Association13). As shown in Fig. 10, the structural properties in the two horizontal directions 
are almost the same, and no torsional vibrations occur. The calculated safety factors for lateral 
load-carrying capacity are 1.13 for the five-story building, 1.06 for the ten-story building, and 1.06 for 
the 14-story building.  

Table 1 lists recorded ground motions, in which peak ground velocity (PGV) is scaled to between 
0.20 and 0.75 m/s for input motions. Figure 11 shows the response spectra of the scaled ground motions 
with a 0.5 m/s PGV. 
 
5.2  Numerical modeling and spatial frame analysis 
 
Spatial frame analysis was conducted using frame models instead of the lumped mass model. The  
 

     
     (a) Floor plan                 (b) Framing elevation 

Fig. 10 Schematic diagram of the ten-story housing building with a TMD13) 
 

   Table 1 Recorded ground motions 

Earthquake Dir. 
PGA 
(m/s2) 

PGV (m/s) 

El Centro  
1940 

NS 3.417 0.335 
EW 2.101 0.369 

Taft  
1952 

NS 1.527 0.157 
EW 1.759 0.177 

Hachinohe 
1968 

NS 2.297 0.344 
EW 1.802 0.378 

JMA Kobe 
1995 

NS 8.180 0.965 
EW 6.174 0.803 

                           
                           Fig. 11 Response spectra of recorded ground motions 

 (0.05% damping ratio) 

X

Y

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4

固有周期（s）

Sv
（

m
/s
）

PGV was scaled to 0.5 m/s

Mean of eight waves 

Natural period (s)  

- 52 -



 

 
 

centralized TMD damping force may cause localized damage in the upper stories. In this case, the large 
TMD increases the axial force, especially in the top columns, which leads to a change in their strength. 
The frame models consisting of nonlinear members can simulate these effects.  

This analysis employed a fiber model with axial force and bending moment interaction for the 
columns and a plastic-hinge model for the beams. The modeling of the beam-column joints and 
T-shaped beam width, including a part of the concrete floor, was based on the Architectural Institute of 
Japan Standard for Structural Calculation of Reinforced Concrete Structures14). The floor diaphragms 
are considered rigid. Total designed TMD mass was distributed at nine nodal points over the rigid 
rooftop (intersections of X2, X3, X4 and Y2, Y3, and Y4 base lines shown in Fig. 10(a)). The structural 
analysis program RESP-D ver. 3.1.1 was used to conduct time history analysis15). 
 
5.3  Tuning TMDs using control performance diagrams 
 
The maximum allowable values are 0.05 for the mass ratio  , 0.3 for the damping ratio ah , and 0.5 m 
for the TMD deformation. First, incremental static analysis was carried out to construct the equivalent 
SDOF system using the uncontrolled buildings without TMDs. Table 2 lists the obtained natural periods 
and parameters   and yp . Then, the tuning parameter was found using the control performance diagram 
so that the reduction factor was below 0.85. 

As an example, we will outline the design procedure for the ten-story building. The first step was 
to draw the allowable region in the control performance diagram. To obtain the upper limit, we used 
three assumptions: (1) each story yields at an IDA of 1/150 rad; (2) the ductility factor is 1.0; and (3) the 
height of the building is 30 m. The top floor displacement 0maxU  then became 0.2 m by multiplying 
the three values: 1/150 rad, 1.0, and 30 m. For a ductility factor of 2.0 during more severe responses, the 
TMD deformation should be below 0.5 m. Because the rooftop displacement reaches 0.4 m, the vertical 
axis value should be below 1.25 0

ˆ( / max )d U . In Fig. 9, setting the parameters   to 0.05 and ah  to 0.25 
satisfies both the constraints and required dR . 

For the 14-story building with a height over 31 m, the same tuning parameters give a TMD 
deformation of 0.34 m (1/150 rad 1.0 3.0 14 1.2    ) for 1fD   and 0.68 m for 2fD  . This result 
implies that a long-stroke damper or a stopper is needed to prevent excessive strokes. For the five-story 
building, the optimal damping ratio of 0.14ah   could be selected because the TMD deforms within a 
small range. Table 2 lists the tuned parameters along with the structural properties of each building. 
 
5.4  Peak responses of buildings and TMDs 
 
Table 3 compares the predicted results with the time history analyses. The prediction errors are 19% for 
the TMD deformation and 7% for dR  (or the building displacement). In this case, an average ductility 
 
 

Table 2 Properties of controlled buildings and TMDs 

  * py: normalized secant stiffness at yielding divided by initial stiffness for equivalent SDOF building 
** : the first strength divided by the second strength in the trilinear envelope of the SDOF building 

Building TMD 

Stories 
Fundamental 

natural 
period (s) 

Stiffness 
ratio* 

py  

Strength 
ratio** 


Mass 
ratio 


Tuning 
ratio 


Damping 
ratio 
ha  

Mass 
ma (t) 

Stiffness 
ka (kN/m) 

Damping 
coefficient 
ca (kNs/m) 

5 0.36 0.30 0.37 
0.05 

0.56 0.14 178 2.03×104 0.52×103 
10 0.62 0.33 0.31 0.57 

0.25 
363 1.30×104 1.09×103 

14 0.75 0.32 0.27 0.55 507 1.15×104 1.21×103 
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factor fD  of 1.0 equals the value used in making the control performance diagrams. Figure 12 
demonstrates the cause of the errors. In the top graphs, a good control performance was achieved, and 
no localized damage was confirmed. Although the TMD did not reduce the building response in the 
bottom graphs (for El Centro EW, Taft EW, and Hachinohe NS), the uncontrolled building response was 
extremely small compared to the previous case. This result implies that these three cases fell into local 
minima on the non-smoothed response spectrum curves, where viscous damping is quite ineffective 
even in elastic systems. Removing these special cases gives an average dR  of 0.78, which is almost 
equal to the predicted value ( 0.8dR  ). The TMD reduced the maximum inter-story drift to below 1/100 

rad except in the case of the JMA Kobe NS input. Table 4 lists the dR  for the typical PGV, and Fig. 13 
 
 

Table 3 Accuracy of predicted peak responses 

 

Input ground motions 
Mean 
values 

Predicted 
values 

 
Predicted 

Mean El Centro Taft Hachinohe JMA Kobe 

NS EW NS EW NS EW NS EW 
Df 0.98 0.74 0.74 0.78 0.91 1.38 1.20 1.31 1.00 - - 

d / U0 1.50 1.76 1.26 1.47 1.40 1.64 1.43 1.47 1.49 1.20 0.81 
Rd 0.69 0.96 0.76 1.08 0.89 0.85 0.79 0.79 0.85 0.79 0.93 

d: peak deformation of TMD; U0: rooftop displacement for uncontrolled building; Rd: displacement reduction ratio; Df : q/qy, 
where qy is the yielding displacement for a SDOF building and q is modal displacement; Rd: normalized peak controlled 
response divided by uncontrolled response over distributed inter-story drift 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12 Control performance in terms of peak story drift angles (PGV = 0.5 m/s, ten-story building) 
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shows the variations of dR  in terms of PGV. These results demonstrate that the reduction ratio dR  
ranges from 0.80 to 0.85. Figure 14 indicates that the TMD deformation d  satisfies the constraints 
( 0.5md  ) even for the severe input (PGV = 0.75 m/s). In the 14-story building, some ground motions 
deformed the TMD beyond its constraints. To prevent the damage, adding a stopper device to the TMD 
was effective without reducing control performance. Figure 15 shows the maximum IDA of all the 
stories in the controlled and uncontrolled buildings. Apparently, the enveloped IDA of the eight inputs 
was reduced to less than the average. For example, the PGV corresponding to an IDA of 1/100 rad was 
0.4 m/s for the uncontrolled case and 0.6 m/s for the controlled case. It was also confirmed that the 
acceleration reduction from the TMD was roughly 0.95 for the five-story building and 0.85 to 0.90 for 
the ten and 14-story buildings, respectively. The TMDs did not amplify the top acceleration. 
 

 
Table 4 Reduction ratios of peak responses in controlled buildings 

PGV 

(m/s) 

Input ground motions 
Mean 
values 

Standard 
deviation El Centro Taft Hachinohe JMA Kobe 

NS EW NS EW NS EW NS EW 

0.25 0.64 0.80 0.72 0.88 0.90 0.70 0.83 0.80 0.78 0.09 
0.50 0.69 0.96 0.76 1.08 0.89 0.85 0.79 0.79 0.85 0.12 
0.75 0.68 0.94 0.64 0.90 0.89 0.89 1.00 0.82 0.85 0.13 

 

 
 

 

 

 

 

 

 

 
           
         PGV (m/s)            PGV (m/s)            PGV (m/s) 

        (a) Five-story building         (b) Ten-story building           (c) 14-story building 

Fig. 13 Variations in control performance in terms of PGV 
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        (a) Five-story building         (b) Ten-story building           (c) 14-story building 

Fig. 14 Variations in TMD peak deformation in terms of PGV 
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PGV (m/s)            PGV (m/s)            PGV (m/s) 

 

 

 

 

 

 

 

PGV (m/s)            PGV (m/s)            PGV (m/s) 

         (a) Five-story building          (b) Ten-story building          (c) 14-story building 

Fig. 15 Variations in peak IDA in terms of PGV 
 
 
6.  CONCLUSIONS 
 
In this study, we created control performance diagrams using time history analysis to support tuned 
mass damper (TMD) design for middle- and high-rise reinforced concrete buildings. The methods were 
demonstrated, and the effect was verified with frame analysis. The findings are summarized below. 
 

 For a building ductility factor ( fD ) above 1.0, the TMD to building deformation ratio 
approximately holds. Therefore, the control performance curve based on 1fD   is applicable 
to a wide range of fD  values, giving the predicted TMD deformation. 

 By optimizing the TMD for the seismic intensity at which the building ductility factor is 1.0, its 
performance at reducing building displacement approximately holds for more severe ductility 
factors. A TMD with a 5% mass ratio reduces peak building displacement by 15% to 20%.  

 Control performance diagrams are useful, especially with multiple active constraints, 
including the allowable mass, damping ratio, and TMD deformation. 

 Predicted values from the controlled performance curves have good accuracy compared to the 
results of three different buildings through spatial frame analysis.  

 The large damping force of TMDs reduces the overall inter-story drift without any localized 
deformation of the building.  

 
 
ACKNOWLEDGMENT 
 

This work was conducted with the support of the Obayashi Foundation. The authors are grateful to 
Yutaro Sumi, Naoya Goto, and Ning Jiao for promoting the seismic rehabilitation techniques of existing 
buildings using TMDs in Taiwan. 

Uncontrolled Uncontrolled Uncontrolled 

Controlled Controlled Controlled 

Envelope 

Envelope 

M
ax

im
um

 in
te

r-
st

or
y 

dr
if

t a
ng

le
 (

ra
d)

 

M
ax

im
um

 in
te

r-
st

or
y 

dr
if

t a
ng

le
 (

ra
d)

 

M
ax

im
um

 in
te

r-
st

or
y 

dr
if

t a
ng

le
 (

ra
d)

 

M
ax

im
um

 in
te

r-
st

or
y 

dr
if

t a
ng

le
 (

ra
d)

 

M
ax

im
um

 in
te

r-
st

or
y 

dr
if

t a
ng

le
 (

ra
d)

 
M

ax
im

um
 in

te
r-

st
or

y 
dr

if
t a

ng
le

 (
ra

d)
 

- 56 -



 

 
 

REFERENCES 
 

1) Sone, T., Ogino, K., Kamoshita, N. and Muto, K.: Experimental Verification of a Tuned Mass 
Damper System with Two-Phase Support Mechanism, Japan Architectural Review, Vol. 2, No. 3, 
pp. 250–258, 2019. 

2) Nakai, T., Kurino, H., Yaguchi, T. and Kano, N.: Control Effect of Large Tuned Mass Damper 
Used for Seismic Retrofitting of Existing High-Rise Building, Japan Architectural Review, Vol. 2, 
No. 3, pp. 269–286, 2019. 

3) Ishikawa, Y., Maseki, R., Aono, S., Kimura, Y. and Yamato, N.: Development and Analysis of 
Long Stroke Tuned Mass Damper for Earthquakes, Japan Architectural Review, Vol. 2, No. 3, pp. 
259–268, 2019. 

4) Kano, N., Hori, Y. and Kurino, H.: Analytical Study on Tuned Mass Dampers for RC High-Rise 
Building with Structural Period Fluctuation—Part1 Fundamental Study on Optimal Settings of Dual 
TMDs, Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan, B-2, pp. 
695–696, 2015 (in Japanese). 

5) Kaneko, K.: Multipurpose Passive Control of Mid-Story Isolation Buildings Designed to Mitigate 
Seismic Response in Substructure, Journal of Structural and Construction Engineering 
(Transactions of AIJ), Vol. 80, No. 718, pp. 1869–1879, 2015 (in Japanese). 

6) Kaneko, K.: Tuning Strategy of Hysteretic Mass Damper for Reducing Inter-Story Drift beyond 
Elastic Limit of Steel Buildings, Journal of Structural and Construction Engineering (Transactions 
of AIJ), Vol. 83, No. 752, pp. 1423–1433, 2018 (in Japanese). 

7) Lin, P. Y., Lin, T. K. and Hwang, J. S.: A Semi-Active Mass Damping System for Low- and 
Mid-Rise Buildings, Earthquakes and Structures, Vol. 4, No. 1, pp. 63–84, 2013. 

8) Lin, G. L., Lin, C. C., Lu, L. Y. and Ho, Y. B.: Experimental Verification of Seismic Vibration 
Control Using a Semi-Active Friction Tuned Mass Damper, Earthquake Engineering and Structural 
Dynamics, Vol. 41, No. 4, pp. 813–830, 2012. 

9) Kaneko, K. and Takahashi, K.: Optimal Tuning Ratio of Mass Damper in Reinforced Concrete 
Buildings Subjected to Strong Ground Motion, Journal of Structural and Construction Engineering 
(Transactions of AIJ), Vol. 85, No. 777, pp. 1387–1395, 2020 (in Japanese). 

10) Nakai, T. and Kurino H.: Proposition of Semi-Active Controlled Tuned Mass Damper Adaptable to 
a Structure's Period Fluctuation, Journal of Structural and Construction Engineering (Transactions 
of AIJ), Vol. 83, No. 744, pp. 233–243, 2018 (in Japanese). 

11) Takeda, T., Sozen, M. A. and Nielsen, N. N.: Reinforced Concrete Response to Simulated 
Earthquake, Journal of Structural Division ASCE, Vol. 96, pp. 19–26, 1970. 

12) Warburton, G.: Optimum Absorber Parameters for Various Combinations of Response and 
Excitation Parameters, Earthquake Engineering and Structural Dynamics, Vol. 10, pp. 381–401,  
1982. 

13) Japan Building Disaster Prevention Association: Typical Design Examples of Buildings, 628 pp.,  
2007 (in Japanese, title translated by the authors). 

14) Architectural Institute of Japan: AIJ Standard for Structural Calculation of Reinforced Concrete 
Structures, 560 pp., 2018 (in Japanese). 

15) Kozo Keikaku Engineering: Structural Analysis Program for Buildings RESP-D Analysis User’s 
Manual, 294 pp., 2019 (in Japanese, title translated by the authors). 
 
 

 (Original Japanese Paper Published: August, 2021) 
 (English Version Submitted: February 28, 2022) 

(English Version Accepted: March 19, 2022) 

- 57 -




