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ABSTRACT: We constructed ground motion evaluation models of peak accelerations and 
response spectra using supervised machine learning based on a strong motion database. 
The common logarithmic standard deviations of the ratios of the predicted values to the 
observed ones in our models were 0.18–0.21; the variation here is less than that in previous 
ground motion prediction equations. The generalizability of the models was tested on the 
data of three earthquakes that occurred after the earthquakes used for the training dataset. 
The results showed that the prediction accuracy decreased for earthquakes with features 
that were not included in the training dataset; however, the models with features based on 
prediction results using the previous ground motion prediction equation could compensate 
for the bias and lack of training data.  

Keywords: Machine learning, Ground motion prediction, Strong motion database, Peak 
ground acceleration, Response spectrum 

1. INTRODUCTION

Recently, pioneering studies have been conducted in the fields of seismology and earthquake 
engineering using machine learning leading to significant advances. Various proposals have been made 
to improve prediction accuracy and gain new insights by incorporating machine learning approaches in 
earthquake ground motion prediction and utilizing the observation records accumulated to date. Okazaki 
et al.1) created a site-specific ground motion prediction model for peak ground accelerations using neural 
networks. Kubo et al.2) proposed a hybrid model based on conventional seismological physics and 
machine learning. This model was created based on a random forest algorithm using the residuals 
between the prediction results of the previous ground motion prediction equation (GMPE) and the 
observation records as training data. In these studies, the same parameters as in conventional GMPEs, 
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such as magnitude, epicentral distance, focal depth, average S-wave velocity in the upper 30 m (AVS30), 
and top depth of the 1400 m/s S-wave velocity layer (D1400), were used as the features (explanatory 
variables). 

However, to further improve the accuracy of ground motion prediction, common sense and 
preconceptions in seismology and earthquake engineering should be replaced with additional parameters 
that can utilize the ability of machine learning to reflect the nonlinear interrelationships of multiple 
parameters. Matsuoka and Ohno3) constructed ground motion prediction models using a neural network 
for response spectra, incorporating the aforementioned parameters, as well as epicenter and observation 
station locations, as features, and showed that the models demonstrated less variability than previous 
GMPEs. Oana et al.4) organized additional features such as epicenter location, observation station 
location, decision flag for volcanic front passage, and the rupture directivity effect. Then, they created 
ground motion evaluation models using machine learning based on gradient boosting decision trees for 
the peak ground acceleration and response spectra. 

In this study, first, the training dataset from our previous studies4), 5) was expanded and developed. 
Next, we upgraded the ground motion evaluation models using machine learning, making maximum use 
of the strong ground motion data available at present, and verified the prediction accuracy of the models. 
Then, the generalizability of the model was verified using additional test data from earthquakes that 
occurred after the earthquakes included in the training dataset. The distinctive features of this study are 
that it uses a larger number of parameters than conventional GMPEs and models and proposes an 
approach for adding the prediction results from a previous GMPE as one of the features. 

Hereinafter, the mean values mentioned in this paper are the common logarithmic mean. The same 
applies to standard deviations. 
 
 
2. TRAINING DATASET 
 
Strong motion data in the strong motion unified database by Morikawa et al.6) was used as the training 
dataset. This database is a tabular compilation of strong motion records obtained by K-NET and KiK-
net7), the strong motion observation networks of the National Research Institute for Earth Science and  
 

 
Fig. 1 Distribution of earthquake epicenters in 

the training dataset 

 
 

Fig. 2 Heatmap of MJ and log10Xmin in the training 
dataset 
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Disaster Resilience (NIED), from 1997 to February 2018. The database includes the latitude and 
longitude of the epicenter, Japanese Meteorological Agency (JMA) magnitude, moment magnitude, 
focal depth, focal mechanism (strike, dip, and slip angles), and classification value of earthquake type 
by Morikawa and Fujiwara8) as source information. The database also includes observation station 
information such as station cord, latitude and longitude of the station, average S-wave velocity in the 
upper 10 and 30 m, top depth of the 1100, 1400, 1700, and 2100 m/s S-wave velocity layers, and top 
depth of the seismic bedrock. In addition, the database includes fault distance (for major earthquakes 
for which source inversion analysis was performed, the fault distance was calculated using the fault 
model) or hypocentral distance and the classification value of surface and subsurface records. Based on 
the strong motion records, the peak ground acceleration, peak ground velocity, seismic intensity, and 
acceleration response spectra (period range: 0.02–20s) at 5% damping of the horizontal and vertical 
components are calculated and compiled into the database. The soundness of the waveform, such as the 
signal-to-noise ratio of the Fourier amplitude spectrum, has not been evaluated, nor have filtering 
processes in the frequency and time domains. 
    In this study, approximately 630,000 strong motions (14,611 earthquakes) with a peak ground 
acceleration of 1 cm/s2 or greater in the horizontal component of the surface record were used as the 
training dataset. The distribution of epicenters in the training dataset is shown in Fig. 1, a heat map of 
the JMA magnitude MJ and the logarithm of the fault distance Xmin (log10Xmin) is shown in Fig. 2, and 
the number of data points for each earthquake type is shown in Fig. 3. Figure 1 indicates that earthquakes 
with a focal depth H of approximately 30–50 km are distributed along the plate boundary around Japan, 
whereas shallow earthquakes with depths of approximately 20 km or less and deep earthquakes with 
depths of approximately 60 km or more are distributed inland. Figure 2 implies that there are a few data 
points with a large MJ and short Xmin (0–20 are not colored in the figure). However, for example, data 
with MJ around seven include data with Xmin shorter than 10 km. Data of earthquakes with MJ less than 
four also include in the database. Figure 3 indicates that the number of strong motion observation records 
of plate boundary earthquakes is larger than that of crustal and intra-slab earthquakes. Although it is 
considered necessary to take measures against such a bias in data distribution in the future, no such 
measures are taken in this study. 
 

 
3. MACHINE LEARNING METHOD 
 
Supervised machine learning was used to construct the ground motion evaluation models with the 
expectation that nonlinear interrelationships among multiple parameters would be reflected. A gradient 
boosting decision tree9) was used as the machine learning algorithm because it can sequentially add new 
weak learners to fill in the difference between the true and predicted values and eventually use all of 
these weak learners for prediction. This method is expected to be more accurate than the independent 
decision tree or random forest approaches. A conceptual diagram of the gradient boosting decision tree 
is shown in Fig. 4. In this study, we used DataRobot10), a machine learning software that implements 
XGBoost (eXtreme Gradient Boosting)11). Table 1 shows the XGBoost parameters used. The early 
stopping technique was applied to avoid overfitting. Eighty percent of the training dataset was divided 
into five parts; four of them (i.e., 64% of the training dataset) were used as teaching data for model 
creation and one as validation data for evaluating the accuracy of the model. A cross-validation test with 
five test repetitions was performed. The remaining 20% of the dataset was used as test data to evaluate 
the generalizability of the model. Teaching, validation, and test data were all selected randomly. 
 
4. OBJECTIVE VARIABLES AND FEATURES IN THE TRAINING DATASET 
 
4.1 Objective variables and candidate features 

 
The objective variables used were peak ground acceleration PGA[cm/s2] and acceleration response 
spectra SA at 5% damping for the period range of 0.02–5s. SA for the period longer than 5 s was excluded 
due to the possible influence of long-period noise in the time history. The period points for SA were 0.02,  
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Fig. 4 Conceptual diagram of gradient boosting decision 

tree 
 

 
Fig. 3 Strong motion observation records for each 

earthquake type 

Table 1 Parameters of XGBoost 

 
 

 
Fig. 5 Example histograms of the objective variables 

 
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 2.0, 2.2, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0. The 
models were trained on the common logarithm of RotD50 for PGA (log10PGA) and that of RotD100 for 
SA (log10SA). Examples of the histograms of the objective variables are shown in Fig. 5. The PGA 
distribution is cut off at 1 cm/s2 because PGA is targeted over 1 cm/s2. The log10SA are almost normally 
distributed for the period range of 0.1–0.5s, but the centers of the distributions shift toward the small 
amplitude side for longer periods. 

The 20 candidate features are as follows: JMA magnitude MJ, fault distance or hypocentral distance 
Xmin[km] (given as log10Xmin), focal depth H[km], latitude and longitude of the epicenter lat_eq 
[deg]/lon_eq[deg], earthquake type Type, latitude and longitude of the observation station 
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lat_site[deg]/lon_site[deg], S-wave velocity of the uppermost layer VS1 [m/s], average S-wave velocity  
in the upper 10 m AVS10 [m/s], average S-wave velocity in the upper 30 m AVS30 [m/s], top depth of 
the 1100 m/s S-wave velocity layer D1100 [m], top depth of the 1400 m/s S-wave velocity layer D1400 [m], 
top depth of the 1700 m/s S-wave velocity layer D1700 [m], top depth of the 2100 m/s S-wave velocity 
layerD2100 [m], top depth of the seismic bedrock Dbase [m], epicentral azimuth Λ [deg] (given as sin Λ and 
cos Λ)12), decision flag for volcanic front passage Xvflg

4), and the rupture directivity effect Dir4). MJ was 
chosen rather than moment magnitude MW to utilize data from earthquakes for which the source 
mechanism and MW are not available. VS1 was defined by referring to nearby boring data13) for some 
stations where VS1 was unknown due to lack of data. AVS30 was used instead of AVS10 at stations where 
 

Table 2 List of earthquakes for which the fault distance and rupture directivity effect are considered. 

 

Date and time of earthquake Epicenter M J H [km] DB* Reference
1996/10/19 23:44 Hyuganada 6.9 34 〇 14)
1996/12/03 07:18 Hyuganada 6.7 38 〇 14)
1997/03/26 17:31 Satsuma, Kagoshima 6.6 12 〇 15)
1997/05/13 14:38 Satsuma, Kagoshima 6.4 9 〇 15)
1997/06/25 18:50 Central Yamaguchi 6.6 8 〇 16)
1998/09/03 16:58 Northern Iwate 6.2 8 〇 16)
2000/10/06 13:30 Western Tottori 7.3 9 〇 17)
2001/03/24 15:28 Akinada Sea 6.7 46 〇 18)
2003/05/26 18:24 Off the coast of Miyagi 7.1 72 19)
2003/07/26 07:13 Northern Miyagi 6.4 12 20)
2003/09/26 04:50 Off the coast of Tokachi 8.0 45 〇 21)
2004/09/05 19:07 Off the southeast coast of Mie 7.1 38 22)
2004/09/05 23:57 Off the southeast coast of Mie 7.4 44 22)
2004/10/23 17:56 Niigata-Chuetsu 6.8 13 〇 23)
2005/03/20 10:53 Off the northwest coast of Fukuoka 7.0 9 〇 24)
2007/03/25 09:42 Off the Noto Peninsula 6.9 11 〇 25)
2007/07/16 10:13 Off the coast of Niigata-jouchuetsu 6.8 17 〇 26)
2008/06/14 08:43 Southern Iwate 7.2 8 〇 27)
2008/07/24 00:26 Northern coast of Iwate 6.8 108 28)
2009/08/11 05:07 Suruga-bay 6.5 23 29)
2011/03/11 14:46 Off the coast of Sanriku 9.0 24 〇 30)
2011/03/11 15:15 Off the coast of Ibaraki 7.6 43 31)
2011/03/12 03:59 Northern Nagano 6.7 8 32)
2011/04/07 23:32 Off the coast of Miyagi 7.2 66 33)
2011/04/11 17:16 Hamadori, Fukushima 7.0 6 34)
2013/02/25 16:23 Northern Tochigi 6.3 3 35)
2014/11/22 22:08 Northern Nagano 6.7 5 36)
2015/05/13 06:13 Off the coast of Miyagi 6.8 46 37)
2016/01/14 12:25 Off the coast of Urakawa 6.7 52 38)
2016/04/01 11:39 Off the southeast coast of Mie 6.5 29 39)
2016/04/14 21:26 Kumamoto 6.5 11 40)
2016/04/16 01:25 Kumamoto 7.3 12 〇 41)
2016/10/21 14:07 Central Tottori 6.6 11 42)
2016/11/22 05:59 Off the coast of Fukushima 7.4 25 43)

*The earthquakes to which the source model was originally reffered when the strong motion database was created are marked
with "〇".
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AVS10 could not be obtained. Table 2 shows the list of earthquakes for which the fault distance and 
rupture directivity effect are considered. No trimming or other editing was performed on the source 
inversion results. Xmin for earthquakes not shown in Table 2 was the hypocentral distance. Because Dir 
is defined as a measure of the relative rupture directivity effect at each station within the earthquake, 
Dir for earthquakes not shown in Table 2 was uniformly taken to be 0.5, assuming rupture from the 
center of the circular fault plane. 

If features are dependent on each other, not only will their influence on the objective variable be 
distributed, and thus difficult to interpret, but there is also the concern of overfitting in machine learning. 
Therefore, it is preferred that the features be independent of each other. First, the mutual information 
values among the features were compiled, as shown in Fig. 6. Hereinafter, the values in parentheses 
indicate the mutual information. sin Λ and cos Λ (0.63) are naturally highly correlated because they share 
commonality through Λ. The reason for the high mutual information values of D1700 and D2100 (0.59), 
D1400 and D1700 (0.47), D1100 and D1400 (0.44), D1400 and D2100 (0.42), D2100 and Dbase (0.41), D1100 and 
D1700 (0.37), D1700 and Dbase (0.36), and D1100 and D2100 (0.33) may be due to the correlation derived from 
the thickness of each layer consisting of the deep soil structure. The relationship between H and Type 
(0.39) appears to reflect a bias in the location of the earthquake and its focal depth. The relationships 
between lat_eq and lon_eq (0.36) and lat_site and lon_site (0.36) are not physical correlations, as they 
are due to the distribution of epicenters and observation stations along the topography of the Japanese 
archipelago, which extends in the northeast-southwest direction. 
 
4.2 Influence of the number of features 
 
To confirm the influence of the number of features, ground motion evaluation models with different 
numbers of features were constructed for PGA as a representative example. Models M20–M5 (the 
number in the model name corresponds to the number of features used in that model) were constructed 
by individually removing first the features with high mutual information values and then features with 
low influence on the prediction results. Subsequently, validations were performed for each model, and 
the proximity between the predicted values of each model and the observed values was evaluated. 
The impact of each feature in Model M20 is shown in Fig. 7. Here, Permutation Importance44) was used 
as the feature impact. The large impacts of Xmin, MJ, and H provide the rationale for these parameters 
being mainly used in previous GMPEs. Following them, the impacts of lon_eq, lat_eq, lon_site, and 
lat_site are nearly as large as H. The regional source characteristics are affected by the epicenter location, 
whereas the site characteristics are affected by the site location. Therefore, it is inferred that those effects 
are reflected in the feature impact45). Moreover, following them, the impacts of AVS10 and Dbase are 
relatively large, whereas the impacts of other features are small with similar ratios. 

Models M20–M5 and their features are shown in Table 3. The cross-validation and test results for 
each model are shown in Table 4. Table 4 also shows the means and standard deviations of the common 
logarithm of the ratio distributions of the predicted values to the observed ones. Here, the normalized 
Gini, which evaluates the consistency between the rank order of the observations and that of the 
predictions when sorted in order of increasing amplitude, was used as the evaluation index for the cross-
validations and tests. If the normalized Gini value is one, the observed and predicted ranks are in perfect 
agreement. Table 4 shows that the cross-validation and test results for M20–M16 are greater than 0.9, 
with a mean of zero and a small standard deviation, suggesting a high prediction accuracy. However, 
the validation and test results values decrease slightly, and the standard deviations increase slightly for 
models with less than 15 features. The increase rate of the standard deviation is particularly large for 
Models M8–M5. Sammon mapping46), which evaluates the proximity between predicted and observed 
values, is shown in Fig. 8. The figure indicates that M16–M20 are relatively close to the observed values 
(“obs”), whereas the other models are further away from the observed values. This visually indicates the 
same trend as in the validation and test results. Considering the above, we concluded that approximately 
16 features in the ground motion evaluation model for our dataset would provide sufficient prediction 
accuracy. 

As a result, the following 16 features were selected for machine learning: MJ, Xmin, H, lat_eq, lon_eq, 
lat_site, lon_site, VS1, AVS10, AVS30, D1400, Dbase, sinΛ, cosΛ, Xvflg, and Dir. 
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Fig. 6 Mutual information values among the features 

 

 

 
Fig. 7 Impact of each feature in Model M20; the horizontal axis is standardized so that the sum of the 

feature impact is 100%. 

 
Table 3 Models M20–M5 and their features 

 

Xmin Mj H Type Xvflg Dir lon_eq lat_eq lon_site lat_site

VS1 AVS10 AVS30 D1100 D1400 D1700 D2100 Dbase sinΛ cosΛ

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

logPGA

Feature / Model M20 M19 M18 M17 M16 M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M17MF
Xmin 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

Mj 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
H 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

lat_eq 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
lon_site 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
lon_eq 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
lat_site 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
AVS10 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
Dbase 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
Xvflg 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
D1400 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇
VS1 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇

sinΛ 〇 〇 〇 〇 〇 〇 〇 〇 〇
Dir 〇 〇 〇 〇 〇 〇 〇 〇

AVS30 〇 〇 〇 〇 〇 〇 〇
cosΛ 〇 〇 〇 〇 〇 〇
Type 〇 〇 〇 〇

D2100 〇 〇 〇
D1100 〇 〇
D1700 〇
MF13 〇
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Table 4 Cross-validation and test results for each model 

 
 

 
Fig. 8 Sammon mapping evaluating the 

proximity between predicted and 
observed values 

 
Fig. 9 Means and standard deviations of the 

common logarithm of the ratio 
distributions of the predicted values to the 
observed ones for the training dataset 

 
 
5. CONSTRUCTION OF GROUND MOTION EVALUATION MODELS 
 
5.1 Ground motion evaluation Model M16 
 
The ground motion evaluation Model M16 for PGA and SA (for the period range 0.02–5 s) at 5% 
damping was constructed with machine learning using the features listed in Table 3. The means and 
standard deviations of the common logarithm of the ratio distributions of the predicted values to the 
observed ones for the training dataset are shown in Fig. 9(a). The means were zero for all the ground 
motion indexes, and the standard deviations were in the range 0.18–0.20 and were smaller than those of 
the previous GMPEs8), 47). The examples of the relationships between observed and predicted values 
shown in Fig. 10 indicate that there is no significant difference between the ratio distributions of the 
training and cross-validation data and those of the test data. Additionally, the shapes of the ratios of the 
predicted values to the observed ones are almost normally distributed. 
    Figure 11(a) shows the feature impacts of Model M16; the proportion of the impact of each feature 
differs depending on the period. The impact of Xmin is approximately 30% in the short-period range, but 
it decreases up to 0.6 s and is approximately 20% in periods over 0.6 s. The impact of MJ is small at 
approximately 20% for periods of 0.05 s and 0.1s, but generally increases as the period becomes longer, 
reaching more than 50% for periods over 1s. The impact of H is slightly less than 10% for the period 
range of 0.02–0.1 s, decreases slightly for the period range of 0.2–0.5 s, and is almost the same proportion 
for periods over 0.5 s. The impacts of lon_eq, lat_eq, lon_site, and lat_site are smaller for longer periods. 
The impacts of the shallow ground features are larger in the order of AVS10, VS1, and AVS30 in the whole 
period range, where they are most likely to have an influence. The sum of the impacts of these three 
features contributes more than 5% for the period range of 0.2–1.5 s, but is less significant for the periods 
under 0.1 s. The respective impacts of D1400 and Dbase are small independent of periods; the sum of the 
impacts of two features is approximately 3–4%of the total. The impacts of sin Λ and cos Λ are only a few 
percent regardless of the period. The impact of Xvflg contributes only a few percent, but its effect is 
relatively large in the short-period range. The impact of Dir tends to increase with longer periods, 

M20 M19 M18 M17 M16 M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M17MF
Cross-validation 0.904 0.904 0.902 0.902 0.903 0.898 0.899 0.900 0.893 0.894 0.895 0.896 0.876 0.860 0.825 0.746 0.901

Test 0.903 0.904 0.902 0.902 0.903 0.897 0.898 0.900 0.892 0.893 0.895 0.896 0.875 0.860 0.822 0.744 0.900
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard deviation 0.177 0.176 0.178 0.178 0.177 0.181 0.181 0.179 0.186 0.185 0.184 0.183 0.199 0.209 0.231 0.280 0.178
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Fig. 10 Examples of the relationships between observed and predicted values; the solid lines indicate 

one times the observed values, and the dashed lines indicate half and twice the observed 
values. 

 

 

 
(a) M16 

 
(b) M17MF 

Fig. 11 Feature impacts in Models M16 and M17MF; the horizontal axis is standardized so that the 
sum of the feature impact is 100%. 

 
accounting for 3% for periods over 3 s, and is comparable to that of the features for shallow and deep 
underground structures. All feature impacts were positive values; thus, no features were completely 
insignificant. 
 
5.2 Ground motion evaluation Model M17MF 
 
As in the study by Ishii et al.5), the prediction result from the previous GMPE was added to the 16 
features in the previous section as a new feature, and machine learning was performed again to examine 
its effects on the ground motion evaluation models. 

The equation formulated by Morikawa and Fujiwara8) was used for the GMPE. Here, the Model 1 
equation with a term of the square of MW is used, where the value obtained is the vector of the two 

MF13 Xmin Mj H Xvflg Dir lon_eq lat_eq lon_site

lat_site VS1 AVS10 AVS30 D1400 Dbase sinΛ cosΛ
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horizontal components of the ground motion. For MW < 5.5, the GMPE is extrapolated, and when MW 
is unknown, it is converted from MJ to MW using Takemura’s48) equation. Correction terms for 
amplification characteristics and anomalous seismic intensity distribution were not considered. The 
predicted result (denoted as feature MF13) was added to the M16 features to construct the ground motion 
evaluation models M17MF for PGA and SA (for the period range of 0.02–5 s) at 5% damping using 
machine learning (refer to M17MF in Table 3). Note that the prediction results of the GMPE8) are the 
results of using some of the other features of the M17MF, thus, the effects of those features are double 
counted. 

Table 4 shows that the scores of M17MF in the cross-validation and test are comparable to those of 
M16. As shown in Fig. 8, the distance to the observations in the PGA is slightly closer for M17MF than 
for M16, suggesting that M17MF reproduces the observations more accurately. As shown in Fig. 9(b), 
the means of the common logarithm of the ratio distributions of the predicted values to the observed 
ones for the training dataset were zero for all ground motion indexes. The standard deviations were 
0.18–0.21, and were similar to those of M16 and smaller than those of previous GMPEs8), 47). 

The feature impacts of Model M17MF are shown in Fig. 11(b). Compared with M16 in Fig. 11(a), 
a considerable amount of the impact of MJ and Xmin is replaced by MF13, and the impact of the other 
features increases slightly except for Dir, which suggests that the double counting of feature effects has 
little influence. There is a gap between the period of 0.2 s and 0.3 s. In the period range of 0.05–0.2 s, 
the impacts of MF13, AVS10, and AVS30 are small, while those of lon_eq, lat_eq, lon_site, and lat_site 
are relatively large. The GMPE8) also has large residuals in this period range, suggesting that the 
influences of not only the shallow and deep soil structures below the site but also the regional 
characteristics of the hypocenter and observation stations, or unexpected features, may be strong in this 
period range. As in the case of M16, all the feature impacts were positive values; thus, no feature were 
completely insignificant. 
 
 
6. VALIDATIONS USING ADDITIONAL TEST DATA 
 
In the previous section, we verified the generalizability of the models using 20% test data randomly 
selected from the training dataset. However, to validate the accuracy of the model for the prediction 
problem, the test data should be from earthquakes that occurred later than the training data. In this 
section, we used the strong motion data from the 2018 northern Osaka earthquake, 2019 off the coast of 
Yamagata earthquake, and 2021 off the coast of Fukushima earthquakes (hereinafter referred to as the 
Osaka earthquake, Yamagata earthquake, and Fukushima earthquake, respectively.) as additional test 
data, which are not included in the training dataset, to further validate the generalizability of the models. 
The predicted values were compared to the observed ones to validate the prediction accuracy of M16 
and M17MF. The characteristics49) of the three earthquakes used as additional test data are shown in Fig. 
12. The source inversion results from Asano et al.50), NIED51), and Kubo et al.52) were used to calculate 
Xmin and Dir for each earthquake. As in the training dataset, the objective observation stations were those 
with PGA of RotD50 over 1 cm/s2. 

Comparisons of the attenuation characteristics of PGA predictions and observations for the three 
earthquakes for Models M16 and M17MF are shown in Fig. 13. For the Osaka earthquake, the M16 
predictions sufficiently capture the trend of observed attenuation. The observed and predicted values 
correspond well for the M17MF, except for a slight underestimation at the fault distance of around 50 
km. For the Fukushima earthquake, both models show relatively good correlation between observed and 
predicted values. For the Yamagata earthquake, the underestimation of the predictions in the range of 
50–200 km is noticeable in both models. AKTH04 (Higashinaruse), a site where extremely large 
amplitudes were observed, had amplification approximately five times greater than that of its 
neighboring stations. Because the AKTH04 seismograph is located on a cliff53), the topographical effect 
may have caused the amplification. However, it was also confirmed that not all earthquakes are always 
greatly amplified. Therefore, it is considered that the machine learning models could not reproduce this 
trend. Although the accumulation of similar data is ideal for learning such trends in the machine learning 
models, measures such as weighting unique training data are also considered effective. 
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Fig. 12 Properties of earthquakes 

used as additional test data 

 
Fig. 13 Comparisons of the attenuation of PGA predictions and 

observations for the three earthquakes for Models M16 
and M17MF 

 

 (a) Osaka earthquake 

 
(b) Yamagata earthquake 

 (c) Fukushima earthquake 
Fig. 14 Comparisons of the pseudo-velocity response spectra pSV predictions and observations 

Date and time of
earthquake

Epicenter M J H [km]

2018/06/18 07:58 Northern Osaka 6.1 13

2019/06/18 22:22
Off the coast of

Yamagata
6.7 14

2021/02/13 23:08
Off the coast of

Fukushima
7.3 55
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      (a) OSK002         (b) KYT011                (c) MYGH10 
Fig. 15 H/V spectral ratio or surface/borehole spectral ratio of the observation records for the 

mainshock and aftershocks 
 
    Figure 14 compares the observed pseudo-velocity response spectra pSV at 5% damping, calculated 
by dividing SA by the circular frequency ω, with the predictions of both models, using the three sites 
shown on the left side of the figure for each earthquake. In general, the predicted results represent the 
periodic characteristics of the response spectra of the observation records well. However, the spectral 
peaks in OSK002, KYT011, and MYGH10 are underestimated at the period range of approximately 
0.2–0.5 s, which is considered to be the primary dominant period in the surface ground. The H/V spectral 
ratios of the OSK002 and KYT011 records for the mainshock and aftershocks are shown in Fig. 15(a) 
and 15(b) respectively, and the surface/borehole spectral ratio of the record at MYGH10 is shown in Fig. 
15(c). Figure 15 shows that there is no significant change in the dominant period between the mainshock 
and aftershock records for OSK002 and KYT011. However, focusing on the period of approximately 
0.2–0.5 s for OSK002 and the period of just over 0.2 s for KYT011, it was clear that the ground motion 
amplification was greater than that of the aftershocks during the mainshock. In the spectral ratio of the 
mainshock record at MYGH10, the peak around 0.1 s in the aftershock records shifts to approximately 
0.2–0.3 s, and amplification exceeding that of the aftershock records is observed at approximately 0.4–
0.6 s. It is inferred that the dataset could not learn the amplitude-dependent ground amplification 
characteristics because the number of stations with experience of observing large-amplitude ground 
motions is few in this dataset, and there is almost no data where the dominant period is extended or the 
amplitude level increases or decreases due to nonlinear behavior of the surface soil. Some modifications 
of the training data are necessary for such cases. In the Osaka earthquake shown in Fig. 14(a), both M16 
and M17MF accurately reproduce the period range of 0.5 s or longer range at OSK002 near the source. 
At OSK004, M17MF reproduces the observation well for a broadband period, whereas M16 is larger 
than M17MF for a long period over 1s and overestimates the observation. The tendency for M16 to be 
larger than M17MF in the long-period range is also apparent in OSK002 and KYT011. This is inferred 
to be due to the greater influence of Dir4). In the Yamagata earthquake shown in Fig. 14(b), both models 
underestimate the observations for YMT004 near the source in an approximately 2 s period or less, 
whereas the results for YMT011 and FKS003 far from the epicenter are in good agreement with the 
observations for a broadband period. In the Fukushima earthquake shown in Fig. 14(c), both models 
performed equally well. The prediction results of MYGH10 for the period range of 0.1–2 s are 
underestimated, although those for the other period ranges are comparable to the observation. The 
prediction results of IWT020 correspond very well with the observation for a broadband period. The 
prediction results of HKDH07 are underestimated in the long-period range over approximately 1 s. The 
response spectrum of the 3 s period was uniquely large in the east of Hokkaido in this earthquake 
compared to other earthquakes of the same magnitude and type54). This earthquake was difficult to 
represent in the machine learning model because it was a rare event. 

The means and standard deviations of the common logarithm of the ratios of the predicted values 
to the observed ones for the additional test data are shown in Fig. 16 for each earthquake. In the case of 
the Osaka earthquake, the mean values remarkably exceeded zero for periods over 1 s in the M16, 
indicating a trend toward overestimation. Such a trend is suppressed in the M17MF, and the plots are 
distributed around zero in every period. The standard deviations are approximately 0.3 for the period 

- 50 -



 

(a) M16 
 

(b) M17MF 
Fig. 16 Means and standard deviations of the common logarithm of the ratios of the predicted values 

to the observed ones for the additional test data; the horizontal axis value is the period of SA. 
 

 
Fig. 17 Epicenter distributions of training dataset around the additional test data earthquakes 

 
range of 0.1–0.3 s, and become smaller for a longer period to approximately 0.15. In the case of the 
Fukushima earthquake, the mean values of the M16 are smaller than zero for the period range of 0.9–
1.2 s. In the M17MF, the plots are distributed around zero in every period, and their standard deviations 
are as small as 0.18–0.24, which indicates stable and accurate evaluation for a broadband period. The 
biases and deficiencies in the training data may have been compensated for using the prediction results 
of the previous GMPE as a feature. In the Yamagata earthquake, the means and standard deviations of 
two models were similar, and the means were slightly overestimated for the long-period range. The 
standard deviations became smaller for the longer periods. However, their values were large, in the range 
of 0.3–0.4 for periods under 2 s, and the prediction accuracy was poor compared to the other two 
earthquakes. Two reasons for the poor accuracy are the lack of earthquake data on the Japan Sea side in 
the training dataset and the lack of ground motion data with conditions similar to those of the Yamagata 
earthquake. Figure 17 shows the epicenter distributions of the training dataset around the additional test 
data earthquakes. The figure shows that earthquakes of approximately M5 occur densely around the 
epicenter of the Fukushima earthquake. No earthquakes of the same location and magnitude occurred 
around the epicenter of the Osaka earthquake, but there were some small earthquakes north to northwest 
of the epicenter. There were almost no earthquakes in the region around the epicenter of the Yamagata 
earthquake. Therefore, the constructed models do not sufficiently learn the ground motion characteristics 
caused by seismic waves propagating along the Japan Sea coast at observation stations in and around 
the Tohoku region. Such regional data bias is one of the issues of the models in this study. In the future, 
the lack of data can be compensated by utilizing simulation data, etc. 

- 51 -



 

7. CONCLUSIONS 
 
Using the strong motion database6), we constructed two ground motion evaluation models for PGA and 
SA at 5% damping using machine learning (supervised learning) based on gradient boosting decision 
trees. The first is Model M16, which uses 16 features including the epicenter location and observation 
station locations, and the second is Model M17MF, which uses 17 features including the features of M16 
and the prediction result based on the previous GMPE. The common logarithmic standard deviations of 
the ratios of the predicted values to the observed ones of the constructed models were 0.18–0.21; these 
deviations were smaller than the variability of the previous GMPEs. 

The generalizability of the models was verified with additional test data, and Model M17MF 
produced more stable results than Model M16 for a broadband period. Using the result of the previous 
GMPE as a feature may have compensated for the bias and lack in the training data. Prediction accuracy 
appeared to be affected by the sparsity and density of the training dataset for each earthquake region. 
For Model M17MF, in the case of the Fukushima earthquake, the ratios of the predicted values to the 
observed ones were distributed around zero with a small standard deviation range of 0.18–0.24, due to 
the rich training data for earthquakes that occurred in that region. In the case of the Osaka earthquake, 
the ratios of the predicted values to the observed ones were distributed around zero, with standard 
deviations in the range of 0.15–0.3, due to the relatively limited amount of training data for earthquakes 
that occurred in that region. In the case of the Yamagata earthquake, because there was almost no training 
data for earthquakes that occurred in that region, the predicted results were overestimated on average 
for the long-period range, and the variations were larger than those of the other two earthquakes. 

The ground motion evaluation models in this study consider neither the effects of nonlinear behavior 
of the surface soil on the periodical and amplitude characteristics of ground motions, nor the imbalance 
of various data distributions. In the future, it is necessary to consider how to compensate for these factors 
using simulation data. In addition, we intend to develop a less labor-intensive method for evaluating the 
soundness of the time histories of each of the big ground motion data, and realize the evaluation of the 
phase characteristics of ground motions and the response spectra for the long-period range of over 5 s. 
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