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ABSTRACT: To assist the advancement of tsunami risk assessment methods for nuclear 

power plants, requirements for the generation of artificial tsunami waveforms crucial for 

close linkage between the probabilistic tsunami hazard analysis and tsunami fragility 

analysis were first listed. Then, basic studies were conducted to model the phase and 

amplitude spectra of waveforms observed during the 2011 Tohoku earthquake tsunami. 

Consequently, the average values of the group delay times and amplitude spectrum for each 

period band were confirmed to be effective for each modeling. Finally, based on these 

requirements and results of the basic studies, a technique for generating artificial tsunami 

waveforms using a statistical method was proposed.  
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1. INTRODUCTION

Implementation Standards concerning the tsunami probabilistic risk assessment (PRA) of nuclear power 

plants1) (referred to as the implementation standard) published by the Atomic Energy Society of Japan 

is known as a method for the quantitative evaluation of tsunami risk of nuclear power plants. Tsunami 

PRA evaluates the frequencies of core damage and loss of containment vessel function by combining 

three analyses: (1) a probabilistic tsunami hazard analysis (PTHA) to evaluate the relationship between 

the intensity of tsunamis striking the facility (tsunami water level, etc.) and its exceedance frequency, 

(2) a tsunami fragility analysis to evaluate the probability of loss-of function of SSCs (structures,

systems, and components), and (3) an accident sequence analysis to evaluate the probability of core

damage based on the safety function of the plant systems and quantify the probability as the

comprehensive tsunami risk of nuclear power plant.

Remarkably, the three above analysis methods constituting the tsunami PRA methods are 

interrelated. Since tsunami fragility analysis requires various information related to function loss, such 

as inundation depth, flow velocity, hydrodynamic force, etc., at each installation location of SSCs 

against arbitrary levels of tsunami hazards, having some waveform time histories as input conditions on 

sea surfaces simulating tsunamis at a point off the coast (called the “artificial tsunami waveform”) are 

necessary when obtaining similar information by tsunami run-up analysis, indicating that these artificial 
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tsunami waveforms be closely related to tsunami hazard information. 

To this end, Sugino et al.2) proposed an analytical method for obtaining tsunami fragility curves, 

combining the mean/standard deviation of inundation depths at each installation location of SSCs, the 

mean/standard deviation of the capacity values related to the function loss of SSCs, and the inundation 

depths calculated by the tsunami run-up analysis using multiple artificial tsunami waveforms. In this 

method, sine waves were used as the artificial tsunami waveforms, causing their amplitudes and 

wavelengths to be varied while accounting for waveform variabilities owing to the tsunami source 

diversities. However, the sine waves could not represent the complexity of real tsunami waveforms 

because they oversimplified them, making the rationale for varying this waveform unclear. 

Conversely, Iwabuchi et al.3) proposed a method to generate artificial tsunami waveforms by 

analyzing and classifying frequency characteristics on analytical waveforms from many scenario 

tsunamis. Here, the analytical waveforms for scenario tsunamis were classified into three categories by 

highest water level and further into three categories by a ratio of the long-period component to the 

highest water level, followed by a separation of the analytical waveforms with similar shapes from each 

other. Afterward, average waveforms were calculated for each of the nine categories and multiplied by 

arbitrary factor to obtain artificial tsunami waveforms. This method also attempted to incorporate 

regional characteristics related to tsunami generation, such as bathymetries and earthquake types in the 

sea area around a target site. However, since the average waveforms were multiplied by an arbitrary 

factor, this step did not sufficiently consider the diversity of tsunami sources. 

Since the artificial tsunami waveforms generated by both methods of Sugino et al.2) and Iwabuchi 

et al.3) are input waveforms to tsunami run-up analysis for the sea area around a target site, they have 

been treated as forced water level fluctuation inputs at analysis domain boundaries. Hence, inputting 

such forced water level fluctuations is a method described in the implementation standard1).  

However, in addition to the above methods, the implementation standard1) shows a method for 

generating artificial tsunami waveforms that can be handled continuously in tsunami propagation and 

run-up analysis without dividing the sea area from the tsunami source by the vicinity of a target site. In 

this method, the contribution of a scenario tsunami is first evaluated at each earthquake occurrence 

region by re-decomposing the tsunami hazard curve. Then, representative scenario tsunamis are selected 

based on this information, followed by acquiring artificial tsunami waveforms by adjusting the initial 

profile of tsunamis so that the maximum water level of the representative scenario tsunami at the hazard 

evaluation point matches the target water level. Still, in this method, the crustal deformation associated 

with fault movement is set to be the same as that of the base representative scenario tsunami, even when 

the initial profile is adjusted, causing the relationship between the crustal deformation and the initial 

profile of a tsunami to be unnatural and the rational explanations to be insufficient. 

Due to these limitations, Kihara et al.4) proposed another method, which was similar to the 

implementation standard1), for generating artificial tsunami waveforms based on hazard re-

decomposition, where the adjustment target differs from that of the implementation standard1) when the 

maximum water level at the hazard assessment point for representative scenario tsunamis is matched 

with that of the target water level. As a result, while the implementation standard1) adjusted the initial 

profile of the representative scenario tsunami, the method by Kihara et al. 4) adjusted the fault slip of the 

representative scenario tsunami. Afterward, crustal deformation associated with fault movement was 

calculated from the adjusted fault slip once the correlation between the tsunami water level at the hazard 

assessment point and the uplift/subsidence of the target site had been confirmed.  

The implementation standard1) and Kihara et al.4) methods are effective in practice because 

necessary parameters, such as inundation depth in the onshore run-up area, could be obtained by 

adjusting the initial profile or the fault slip of the representative scenario tsunami. However, since this 

adjustment method is almost the same as simply multiplying the amplitude by a factor so that the highest 

water level of the representative scenario tsunami becomes the target water level, the phase 

characteristics remain the same as the waveforms of the representative scenario tsunamis themselves. 

Therefore, these results indicate no clear rationale for accepting the waveform obtained in this way as 

the target water level waveform. 

Alternatively, a method was employed in generating artificial earthquake ground motions by 

calculating stationary waveforms using a design amplitude spectrum5) and a phase spectrum given by 
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uniform random numbers, and multiplying the stationary waveforms by amplitude envelopes 

representing the earthquake ground motion characteristics in the seismic design of buildings and 

structures of nuclear facilities. In particular, using this method, Sato et al.6) focused on the fact that the 

mean value and standard deviation of the group delay time obtained from the phase spectrum 

corresponds to the location of the centroid and spread (duration) of the seismic motion in a time domain. 

Hence, they proposed a modeling method for the phase spectrum using the wavelet transform7) based 

on observed seismic waves. Consequently, this method was used in the seismic design of railroad 

structures8). By subsequently adopting the seismic PRA method9), a continuous evaluation system from 

probabilistic seismic hazard analysis to fragility analysis was established, combining this phase 

spectrum model with the uniform hazard spectrum obtained from probabilistic seismic hazard analysis. 

With tsunami PRA, developing a method for generating artificial tsunami waveforms that can 

represent variabilities in these waveforms caused by tsunami source diversities with reasonable 

explanatory power while considering the regional characteristics of tsunami generation around a target 

site instead of the above methods of using sine waves or adjusting the initial profile/fault slip of the 

representative scenario tsunamis, is necessary. It is also desirable that the evaluation system from PTHA 

to tsunami fragility analysis is continuous and that the entire tsunami PRA method has close/organic 

linkage. Here, the regional characteristics related to tsunami generation represent the unique bathymetry 

that affects the tsunami waveforms and earthquake types (such as interplate or intraplate earthquakes, 

etc.), inducing tsunamis in the sea area surrounding the facility. The tsunami source diversities indicate 

not only different earthquake types but also different seismic moments, fault locations, fault areas, and 

slip distributions, even if the earthquake types are similar. Organic is a term that describes a state in 

which many parts are assembled to constitute a whole, like an organic body10). In such cases, each part 

is closely linked and influences the other. Therefore, while this paper considers the tsunami PRA method 

as a whole, PTHA, tsunami fragility analysis, and accident sequence analysis were considered as each 

part. Then, we used the term “organic linkage” to refer to a state in which these parameters are more 

closely linked. 

In this paper, we first identify the artificial tsunami waveform requirements for tsunami fragility 

analysis. Next, we conduct basic studies for modeling the phase and amplitude spectra of waveforms 

observed during the 2011 off the Pacific coast of the Tohoku Earthquake and Tsunami (subsequently 

referred to as the Tohoku Earthquake Tsunami). In particular, our study refers to the method of Sato et 

al.6), which has a proven track record in generating artificial earthquake time histories, to create a phase 

spectrum model. Then, to closely/organically link PTHA and tsunami fragility analysis, we extract 

statistical properties from several analytical waveforms of scenario tsunamis obtained by PTHA, thereby 

proposing a method to generate artificial tsunami waveforms using the Monte Carlo method 

(subsequently referred to as the MC method). Finally, we present examples of the generation of such 

waveforms. 

 

 

2. ARTIFICIAL TSUNAMI WAVEFORM REQUIREMENTS FOR TSUNAMI FRAGILITY 

ANALYSIS 

 

We define the artificial tsunami waveform requirements to improve the reliability of tsunami fragility 

analysis as follows: 

 

Requirement 1: The artificial tsunami waveform should be defined at the PTHA target point. The 

horizontal axis of the tsunami fragility curve for SSCs scattered around the facility site should be 

represented by a similar index to that for the tsunami hazard curve to provide uniform information 

associated with tsunami hazard information to an accident sequence analysis in the tsunami PRA method. 

Consequently, the artificial tsunami waveform should be defined at the PTHA target point; its maximum 

water level should correspond to that obtained from the tsunami hazard curve. 

Requirement 2: The artificial tsunami waveform should be able to define any tsunami water level 

in the tsunami hazard curve. To account for the tsunami propagation model uncertainty in PTHA, the 

tsunami hazard curves are calculated assuming lognormal distributions, with maximum water levels of 
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the scenario tsunamis being the median values. Consequently, the horizontal axis range of the tsunami 

hazard curve exceeds the maximum water level of the scenario tsunamis, causing the artificial tsunami 

waveforms within the range of the maximum water level of the scenario tsunamis to be insufficient 

because the tsunami fragility analysis also need to consider the effects of the above uncertainties in the 

PTHA. Therefore, the maximum water level of artificial tsunami waveform should be able to define any 

water level exceeding the maximum water level of the scenario tsunamis. 

Requirement 3: The variabilities in phase and amplitude owing to regional characteristics and 

tsunami source diversities should be statistically and rationally considered on the artificial tsunami 

waveforms. Even given that the maximum water levels are similar at an offshore point away from the 

coast where the facility is located, if the waveform shapes are different, differences should exist in the 

inundation depth at the installation site of the SSC, the inundation area at the site, and the hydrodynamic 

force on the SSC. Consequently, the artificial tsunami waveforms would need to be represented by 

multiple waveforms using the statistical and rational explanatory method so that variabilities in phase 

and amplitude characteristics due to the tsunami source diversity and the regional characteristic related 

to tsunami generation in the sea area around the facility can be considered. 

In PTHA, multiple scenario tsunamis are first defined, after which information such as the maximum 

water levels from these tsunami height time histories are used. This procedure is to extract one 

representative parameter from the valuable information contained in the tsunami height time histories 

and to lose the phase and amplitude characteristic information due to regional characteristics related to 

tsunami generation and source diversities. To this end, it is crucial to recover information on these phase 

and amplitude characteristics lost in PTHA and reflect them in artificial tsunami waveforms. 

Requirement 4: The artificial tsunami waveform should reflect the effects of crustal uplift or 

subsidence associated with fault movement. Elevation changes associated with uplift or subsidence of 

the crust due to fault movement have been directly reflected in the topographic model of a typical 

tsunami run-up analysis using a scenario tsunami. Even given that the two scenario tsunamis have 

similar maximum water levels at the offshore point, if the amount of subsidence at the sites differs, the 

tsunami with the more significant subsidence has a greater impact on the facility. Therefore, these effects 

need to be appropriately considered in the artificial tsunami waveforms to improve the reliability of 

tsunami fragility analysis. 

In light of the above requirements, the aforementioned methods for generating artificial tsunami 

waveforms can be organized as follows: 

First, all four methods1)–4) satisfy requirements 1 and 2. However, while the method of Sugino et 

al.2) does not satisfy requirement 3 because it cannot represent the complexity of real tsunami waveforms, 

the method of Iwabuchi et al.3) does not also satisfy requirement 3 because this method obtains the 

waveform with the target water level based on a multiplication of the average waveform by an arbitrary 

factor, making the rationale unclear and the shape of the artificial tsunami waveform limited. 

Interestingly, however, the method by Iwabuchi et al. indirectly satisfies requirement 4, using the 

analytical waveforms obtained from PTHA to make time-history waveforms of the relative water level 

by subtracting the uplift/subsidence (positive on the uplift side) at the target site from the amplitude of 

the analytical waveforms. Although the implementation standard1) and Kihara et al.4) methods have also 

been considered to satisfy requirement 3 by extracting multiple representative scenario tsunamis with 

high contributions, they do not fully satisfy this requirement because, as mentioned above, no clear 

rationale exists that the tsunami waveform at the target water level can be created by multiplying the 

amplitude of the representative scenario tsunami by an arbitrary factor or adjusting the initial 

profile/fault slip with similar effects. Additionally, while the relationship between the adjusted initial 

profile and the crustal movement in the implementation standard1) is unnatural, even when the crustal 

movement calculated using the adjusted fault slip of Kihara et al.4) is used, there is no clear rationale for 

allowing the fault slip to be adjusted, similar to the previous reason. Therefore, it is unlikely that either 

method provides a sufficiently reasonable explanation for requirement 4. 

Based on the facts above, this paper propose a new method to solve the pending problems. We 

believe that satisfying the requirements will be a concrete measure to realizing the close/organic linkage 

between PTHA and tsunami fragility analysis. To this end, we notably follow the method of Iwabuchi 

et al.3) to address requirement 4, after which we subject the analytical waveforms expressed based on 
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relative water levels to statistical analysis of phase and amplitude spectra. Additionally, we have defined 

the artificial tsunami waveform style as the forced water level fluctuation, which is an input waveform 

for the tsunami propagation and run-up analysis. 

 

 

3. BASIC STUDY ON PHASE AND AMPLITUDE SPECTRA MODELING 

 

3.1 The basic study's flow 

 

We study the modeling of phase and amplitude spectra using observed waveforms to obtain fundamental 

data for constructing a method to generate artificial tsunami waveforms. This study's flow is described 

below. 

Section 3.2 describes the procedure from the modeling of phase and amplitude spectra to the 

reconstruction of waveforms. 

Section 3.3 estimates the phase/amplitude spectra models and reconstruction waveforms according 

to the procedure in Section 3.2, followed by an examination of the aforementioned method to determine 

whether Sato et al.’s method6) can be applied to tsunami waveforms or whether there is a more 

appropriate method. First, in the study of phase spectra models, waveforms are reconstructed using 

various phase spectra models and an amplitude spectrum of the observed waveforms. Next, we compare 

the reconstructions with the observed waveforms. Then, we examine a method for creating an amplitude 

spectrum model that is harmonized with the method for creating a phase spectrum model, after which 

the waveforms reconstructed using various amplitude spectra models and a phase spectrum of the 

observed waveforms, are compared with the observed waveforms as before. Finally, the waveform 

differences are qualitatively shown by superimposing both the reconstruction and observed waveforms 

in the comparison. 

In Section 3.4, furthermore, we perform a quantitative evaluation of the dissimilarity between the 

observed and reconstructed waveforms. Then, in contrast to the previous section's qualitative 

comparison results, we attempt a quantitative evaluation by applying the Jensen–Shannon divergence11). 

Section 3.5 finally examines the impact of uncertainties on the initial integral value of a phase 

spectrum model. Although we obtain the phase spectrum model by setting the initial integral value and 

integrating the group delay time model, this value involve uncertainty. Hence, we first confirme the 

effect of the initial integral value's uncertainty and examine how to select appropriate initial integral 

values for generating artificial tsunami waveforms since these values are expected to affect the shape of 

the reconstructed waveform. Afterward, we create reconstructed waveforms using the phase and 

amplitude spectra models with various initial integral values, followed by an organization of the 

uncertainty effects in the initial integral values using a quantitative evaluation method for waveform 

dissimilarities. 

 

3.2 Procedure from the creation of phase/amplitude spectra models to waveform reconstruction 

 
As described above, this study first use an observed tsunami waveform to design a procedure for creating 

phase/amplitude spectra models. Then, we reconstructe a waveform using these models. Our procedure 

comprise four parts, each of which is described below. 

 

3.2.1 Preprocessing of the observed tsunami waveform 

After the Tohoku Earthquake Tsunami, we first conduct preprocessing to obtain necessary observation 

point information (mainly phase, amplitude, duration time, etc.), including waveform data12) on GPS 

buoys installed 10–20 km offshore from the Pacific coast of the Tohoku region, by adopting the 

following procedures: 

1) Set the time 𝑡𝑎(s) when the maximum water level appears, then shift the time to attain a similar 

maximum water level on the observed waveform to 𝑡𝑎. 

2) Set the duration time 𝑇(s) so that the above 𝑡𝑎 is included, then extract the part of the observed 
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waveform for 𝑇. 

3) Conduct taper processing at the beginning and end of the extracted waveform. First, set a certain 

period 𝑇𝑡  (s) at that time to conduct sine wave taper at the beginning so that the amplitude gradually 

increases from zero between t = 0 and 𝑇𝑡. Then, conduct cosine wave taper at the end so that the 

amplitude gradually decreases to zero between 𝑡 = 𝑇 − 𝑇𝑡 and 𝑇. 

4) Add zero data to the observed waveform after 𝑇 and finally revise the observed waveform with a 

total data number of 2𝑗𝑚𝑎𝑥 . 

 

3.2.2 Creation of the phase spectrum model 

Sato et al.6) used wavelet transformation7) to extract phase information from nonstationary waveforms, 

that is the observed seismic motion, using the scaling and shifting of function 𝜑(𝑡), also called the 
mother wavelet. With 𝜑(𝑡), wavelet transformation could extract analogous waveforms to the mother 
wavelet at various scales within the time-history data 𝑥(𝑡) without losing time information. Since the 
observed tsunami waveform is similar to a nonstationary waveform, we refer to this method while 

improving its parts. Based on these facts, this section first discusses a general outline of Sato et al.’s 

method6), followed by an explanation of the improvements. 

From the method by Sato et al.6), the dispersion wavelet transformation and inverse transformation 

of time-history data 𝑥(𝑡) could be expressed as in Eqs. (1) and (2). 
 

𝑤𝑚
(𝑗)

= ∫ 𝑥(𝑡)

∞

−∞

𝜑𝑗,𝑚
∗ (𝑡)𝑑𝑡   (1)  

 

𝑥(𝑡) =∑𝑔(𝑗)(𝑡)

𝑗

=∑∑𝑤𝑚
(𝑗)

𝑚𝑗

𝜑𝑗,𝑚(𝑡) (2)  

 

where 𝜑(𝑡) represents the mother wavelet, * represents the complex conjugate, suffix j represents the 

scale factor, suffix m represents the time position, 𝑤𝑚
(𝑗)

 represents the wavelet coefficient at j indicating 

the roughness (resolution) of the signal. 𝜑𝑗,𝑚(𝑡) is a wavelet of a different resolution. By adopting the 

WaveLab version.850 of Buckheit et al.13) as the wavelet transformation and inverse transformation tool, 

the time-history data 𝑔(𝑗)(𝑡) at j could further be expressed in Eq. (3), called the wavelet component. 

 

𝑔(𝑗)(𝑡) =∑𝑤𝑚
(𝑗)
𝜑𝑗,𝑚(𝑡)

𝑚

 (3)  

 

Each component waveform was then Fourier transformed to obtain the phase spectrum 𝜙(𝑗)(𝜔), 

after which 𝜙(𝑗)(𝜔)  is differentiated with the angular frequency ω to obtain the group delay time 

𝑡𝑔𝑟
(𝑗)(𝜔) , and the unwrap method of Sawada et al. was applied to calculate the average 𝜇(𝑗)  and 

standard deviation 𝜎(𝑗) of group delay time at the support section of 𝑓(𝑗). 
Subsequently, Sato et al.6) applied Meyer15) as the mother wavelet 𝜑(𝑡) . In such a case, 𝜑(𝑡) 

becomes the compact support in the frequency domain. Hence, in this support section, they expressed 

𝑓(𝑗)(1/s) by Eq. (4). 
 

2𝑗

3𝑇𝑑
≤ 𝑓(𝑗) ≤

2𝑗+2

3𝑇𝑑
 (4)  

 

where 𝑇𝑑 represents the total time of the time-history data. 

Since two values were observed in the support section 𝑓(𝑗) expressed by Eq. (4) because of the 
overlap at the neighboring j of the phase spectrum and group delay time, Sato et al.6) defined a support 

section 𝑓(𝑗)  expressed by Eq. (5) such that the phase and amplitude spectrum were paired. 
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Consequently, it was possible to calculate the 𝜇(𝑗) and 𝜎(𝑗) of the group delay times using the data 
within this support section. 

 

2𝑗−1

𝑇𝑑
< 𝑓(𝑗) ≤

2𝑗

𝑇𝑑
 (5)  

 

Next, they applied similar procedures to several observed seismic motions to obtain a regression 

model equation based on the data groups 𝜇(𝑗) and 𝜎(𝑗). Then, the group delay time model 𝑡′𝑔𝑟
(𝑗)(𝜔) 

was calculated using the MC method, thereby obtaining the phase spectrum model 𝜙′(𝑗)(𝜔)  by 

integrating this group delay time model 𝑡′𝑔𝑟
(𝑗)(𝜔)  with 𝜔 . The above result is from the method 

proposed by Sato et al.6). 

Since this study partially improve Sato et al.’s method6), the improvements must be explained. First, 

we discuss the improvements in the unwrap method: Initially, Sawada et al.14) obtained 𝑡𝑔𝑟
(𝑗)(𝜔) , 

produced its histogram, and conducted a ±𝑇  time shift to the data outside the region [(𝑇𝑚𝑜𝑑
(𝑗) −

𝑇/2)  (𝑇𝑚𝑜𝑑
(𝑗) + 𝑇/2)   centered around the mode 𝑇𝑚𝑜𝑑

(𝑗)  for the data to fit within this region. 

Investigations reveal that this time shift is equivalent to a ±2𝜋𝑇 𝑇𝑑⁄  (rad) shift, causing any shift other 

than ±2π to overwrite the phase information originally contained in the tsunami waveform. In the 

following, we improve the unwrap method to prevent the original tsunami waveform's phase information 

from being rewritten by the unwrap method. 

First, the mode 𝑇𝑚𝑜𝑑
(𝑗) is changed to the median 𝑇𝑚𝑖𝑑

(𝑗). The reason for changing from 𝑇𝑚𝑜𝑑
(𝑗) 

to 𝑇𝑚𝑖𝑑
(𝑗) is to avoid setting the mean at the end of the distribution because the number of data is small, 

within the range of about 2 to 4, causing the histogram to be biased. Then, for the data to fit within the 

region [(𝑇𝑚𝑖𝑑
(𝑗) − 𝑇𝑑/2) (𝑇𝑚𝑖𝑑

(𝑗) + 𝑇𝑑/2)  centered around the median 𝑇𝑚𝑖𝑑
(𝑗), the shift conducted 

on the data outside this region to make them fit within also have to be changed to ±𝑇𝑑. Based on these 
modifications, the ±𝑇𝑑 shift become equivalent to the ±2𝜋(rad) shift, and the phase information of 
the observed tsunami waveform is saved as it is.  

Finally, the group delay time model 𝑡′𝑔𝑟
(𝑗)(𝜔) by Sato et al.’s method6) used the regression model 

equation obtained based on the data groups 𝜇(𝑗)  and 𝜎(𝑗)  to calculate the group delay time from 
several observed seismic motions. Based on the relationship between the number 𝑘𝑚𝑎𝑥 of divisions 

and the reproducibility of the reconstruction waveform, we define the 𝑓(𝑗,𝑘), as shown in Eq. (6), by 

dividing the 𝑓(𝑗) expressed by Eq. (5) into multiple domains to consider an expression method for it 
with as little 𝑘𝑚𝑎𝑥 as possible. 

 

{2𝑗−1 +
2𝑗−1

𝑘𝑚𝑎𝑥
∙ (𝑘 − 1)} ∙

1

𝑇𝑑
< 𝑓(𝑗,𝑘) ≤ {2𝑗−1 +

2𝑗−1

𝑘𝑚𝑎𝑥
∙ 𝑘} ∙

1

𝑇𝑑
 (6)  

 

where 𝑘𝑚𝑎𝑥  is the division number and 𝑘  is a natural number from 1 to 𝑘𝑚𝑎𝑥 . Note that when 

𝑘𝑚𝑎𝑥 = 1, Eq. (6) is equal to Eq. (5). 

 

3.2.3 Creation of the amplitude spectrum model 

Since no existing research on the amplitude spectrum model of the tsunami waveform is known, we 

propose an amplitude spectrum model that matches the aforementioned method of the phase spectrum 

model. First, the observed tsunami waveform is Fourier transformed to obtain the amplitude spectrum 

𝐴(𝜔). Then, while 𝑓(𝑗,𝑘) is set similar to the group delay time model discussed above, the 𝜇(𝑗,𝑘) of 

each part is calculated using the amplitude spectrum and set as the amplitude spectrum model 𝐴′(𝑗,𝑘)(𝜔). 
Although the method described here is relatively simple, the fact that a reconstructed waveform that 

uses such an amplitude spectrum model can reproduce originally observed tsunami waveforms to a 

certain extent will be discussed later in this paper. 
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3.2.4 Waveform reconstruction using the phase/amplitude spectra models 

We finally conduct waveform reconstruction using the phase spectrum model 𝜙′(𝑗)(𝜔)  and the 

amplitude spectrum model 𝐴′(𝑗)(𝜔) obtained through the methods discussed above in 3.2.2 and 3.2.3, 

respectively. Here, the phase spectrum model 𝜙′(𝑗)(𝜔) and the amplitude spectrum model 𝐴′(𝑗)(𝜔) 
with a similar scale factor j are used to conduct Fourier inverse transformation to obtain the component 

waveform 𝑔′(𝑗)(𝑡) after modeling. Afterward, 𝑔(𝑗)(𝑡) in the wavelet inverse transformation of Eq. 

(2) is replaced with 𝑔′(𝑗)(𝑡); the reconstructed waveform 𝑥′(𝑡) is obtained using Eq. (7). 

 

𝑥′(𝑡) =∑𝑔′
(𝑗)(𝑡)

𝑗

 (7)  

 
3.3 Trial calculations for the phase/amplitude spectral models and the reconstructed waveforms 

 

3.3.1 Observed tsunami waveforms and their preprocessing 

Among the waveforms12) observed by GPS buoys during the Tohoku Earthquake Tsunami, this paper 

use G802 (off the southern coast of Iwate). Figure 1 shows the location (depth 204 m12)) where the GPS 

buoy was installed. The observed waveform is divided into two types: The first half of the wave 

(subsequently referred to as the direct wave) that reached the observation point directly from the tsunami 

source, and the second half (subsequently referred to as the superimposed wave) that passed through the 

observation point, reached the coast and was reflected, reached the observation point again, and was 

superimposed on the direct wave. By considering the artificial tsunami waveform characteristics as input 

conditions for tsunami propagation and run-up analysis, targeting only the direct waves is appropriate. 

However, a strict distinction is not made here because the purpose is to conduct a basic study on 

modeling phase and amplitude spectra. Therefore, we set the parameters such as 𝑡𝑚𝑎𝑥 mentioned in 

Section 3.2.1 under the condition that the direct and superimposed waves are mixed. Referring to the 

description of Sato et al.6) that the data length is sufficiently long, and since the observed waveform 

G802 with a time interval of 5 s show a maximum water level rise approximately 25 min after the 

earthquake occurred, we also set the maximum water level generation time 𝑡𝑎 to 1500 s, the duration 

Fig. 1 Installation location of GPS buoy (G802, off the southern coast of Iwate) 

Fig. 2 Water level waveform observed at G802 (processing before and after) 
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time 𝑇 is set to 3000 s (twice the time 𝑡𝑎), the taper processing time 𝑇𝑡 is set to 600 s, and the 𝑗𝑚𝑎𝑥 

of the total number of data 2𝑗𝑚𝑎𝑥  after adding zero data is set to 15. 

A solid red line in Fig. 2 shows the observed waveform after processing. For comparison, the figure 

shows a superimposition of the observed waveforms before processing on a solid blue line. We confirm 

from this schematic that the maximum water level generation time shifted to 1500 s, causing the start 

and end points of the waveform to be gradually increased and decreased by tapering processing. 

Subsequently, zero data is added after 3000 s, causing the total time to be 163840 (= 5 × 215) s because 

the time interval is 5 s. 

 

3.3.2 Waveform reconstruction with the phase spectrum model 

Here, before we consider creating a phase spectrum model, we first confirm the effectiveness of the 

improved unwrap method. To this end, the group delay times are obtained by combining the methods of 

Sawada et al.14) and this paper. Then, we reconstruct waveforms using the amplitude spectrum obtained 

from the observed waveform, followed by a comparison with the originally observed waveform. Figure 

3(a) shows the group delay time 𝑡𝑔𝑟
(𝑗) when the unwrap method of Sawada et al.14) is employed to the 

observed waveform in Fig. 2. Note in the figure that 𝑡𝑔𝑟
(𝑗) is marked with a blue circle, the scale factor 

j and the support interval 𝑓(𝑗) are indicated by green circles and solid lines, and the 𝜇(𝑗) and 𝜎(𝑗) for 

each 𝑓(𝑗) are indicated by solid red lines and dotted red lines, respectively. By adopting this unwrap 

method, investigations confirm that 𝑡𝑔𝑟
(𝑗) , which is scattered in [−𝑇𝑑  𝑇𝑑  , move to the region 

[(𝑇𝑚𝑜𝑑
(𝑗) − 𝑇/2) (𝑇𝑚𝑜𝑑

(𝑗) + 𝑇/2)  for each 𝑓(𝑗). 
Subsequently, we perform the shift of ±2𝜋𝑇 𝑇𝑑⁄  (rad) using this unwrap method, as described 

above, causing the phase information held originally by the observed waveform to be rewritten. Then, 

to confirm its effectiveness, we try to reconstruct the waveform using 𝑡𝑔𝑟
(𝑗) of Fig. 3(a) and 𝐴(𝑗) of 

the observed waveform. Figure 3(b) shows the reconstructed (red line) and observed (blue line) 

superimposed waveforms. Investigations reveal that although the maximum water level generation times 

coincide between the reconstructed and observed waveforms, the waveform shapes do not, proving that 

the phase information is indeed rewritten. We also observe that the difference between 𝜎(𝑗) for each j 

calculated based on 𝑡𝑔𝑟
(𝑗) after the unwrap is small. 

Next, Fig. 4(a) shows 𝑡𝑔𝑟
(𝑗) when the improved unwrap method of this study is applied. The legend 

in the figure is the same as in Fig. 3(a). The result show that 𝜎(𝑗) greatly differ from that shown in Fig. 

3(a), indicating a clear difference in j. Additionally, the distribution of 𝑡𝑔𝑟
(𝑗) after the improved unwrap 

show that the distribution is not random but smooth and continuous for each 𝑓(𝑗). Figure 4(b) shows the 

reconstructed waveform using 𝑡𝑔𝑟
(𝑗) as before. Investigations reveal that although the reconstructed 

waveform almost match the observed waveform, this match is imperfect. The reason for this imperfect 

match is that the phase information is not that of the originally observed waveform after changing 𝑓(𝑗) 
from Eq. (4) to Eq. (5). However, the extent of its impact is small. Thus, as a precaution, the 

reconstructed waveform using 𝑡𝑔𝑟
(𝑗) before the improved unwrap is compared with the reconstructed 

waveform in Fig. 4(b), which makes them utterly consistent, confirming that the improved unwrap has 

no effect. 

The above results show that it is practical to calculate 𝜇(𝑗) and 𝜎(𝑗) from 𝑡𝑔𝑟
(𝑗) based on the 

improved unwrap method, thereby obtaining intrinsic phase information on the observed waveform. 

Therefore, based on these results, we further consider how to create a phase spectrum model. 

First, as in Sato et al.6), we assume a normal distribution using 𝜇(𝑗) and 𝜎(𝑗) of the group delay 

times obtained for each 𝑓(𝑗). Next, while the reconstructed waveform is calculated with the amplitude 

spectrum of the observed waveform after the group delay time model has been obtained by random 

sampling, 𝜇(𝑗) and 𝜎(𝑗) are obtained from the group delay time after applying the improved unwrap 

method shown in Fig. 4(a). Then, normal random numbers are generated using MATLAB's function 

“randn16)” and the Mersenne Twister method17). While Fig. 5(a) shows the group delay time model, 
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j =

Fig. 4 Group delay time employed the improved unwrap method and reconstructed waveform 

 

Fig. 3 Group delay time employed Sawada et al.’s unwrap14) method and reconstructed waveform 

(a) Group delay time (b) Reconstructed and observed waveform 

Fig. 6 Group delay time model using mean values and reconstructed waveform 

 

Fig. 5 Group delay time model using the normal random numbers and reconstructed waveform 

 

Fig. 7 Group delay time model with four-division average and reconstructed waveform 

 

(a) Group delay time (b) Reconstructed and observed waveform 

(a) Group delay time model (b) Reconstructed and observed waveform 

(a) Group delay time model (b) Reconstructed and observed waveform 

(a) Group delay time model (b) Reconstructed and observed waveform 
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Figure 5(b) shows the reconstructed waveform. We also examine the case where 𝜎(𝑗) is zero to 

confirm the effect of 𝜎(𝑗)  on the group delay time model. The group delay time model and 

reconstructed waveform results are shown in Figs. 6(a) and 6(b), respectively. While the blue circles 

shown in Figs. 5(a) and 6(a) represent the group delay time model, the solid red and dashed green lines 

represent 𝜇(𝑗) and 𝜎(𝑗) like in Fig. 4(a). 

Subsequently, we compare the reconstructed waveforms, as shown in Figs. 5(b) and 6(b). 

Investigations show almost no difference in appearance. Although the reason for such a result has not 

been clarified, we observe that at least the effect of incorporating 𝜎(𝑗) into the creation of group delay 

time models is small. Additionally, comparing these reconstructed waveforms with the originally 

observed waveform, it is confirmed that these waveforms drop significantly around 1200 s, resulting in 

almost opposite phases between 1600 s and 2500 s. This finding indicates that the reproducibility is not 

good. Overall, this model is inappropriate since it does not sufficiently extract phase information from 

the observed waveform. 

Figure 6 also shows poor reproducibility by just using the mean value in the support interval 𝑓(𝑗). 

Conversely, Fig. 5 shows the inability of the observed waveform to be reproduced even if 𝑡′𝑔𝑟
(𝑗)

 is 

simply randomly varied. Nevertheless, as seen in Fig. 4(a), 𝑡′𝑔𝑟
(𝑗)

 is significantly and continuously 

distribute in the support interval 𝑓(𝑗) , making it is necessary to simulate this distribution when 

reproducing the observed waveform. Therefore, as a method of simulating a continuous 𝑡𝑔𝑟
(𝑗) 

distribution, we first adopt a simple method to obtain the mean value by dividing the support interval 

𝑓(𝑗) into several intervals though modeling it with some functions is possible. Then, using 𝑓(𝑗,𝑘) in Eq. 

(6), we confirm how the reproducibility of the reconstructed waveform improves when the resolution of 

the mean value is increased by dividing it so that the number of data is similar in the support interval 

𝑓(𝑗). Figure 7(a) shows the group delay time model when the division number is four. In the figure, we 

also compare similar 𝜇(𝑗)  and 𝜎(𝑗)  as in Fig. 4(a). Consequently, the group delay time model 

approximate the group delay time of the observed waveform in Fig. 4(a) by increasing the division 

number from the long-period side where j is small. Similarly, Fig. 7(b) shows the reconstructed 

waveform when the division number is four. In this reconstructed waveform, compared with that in Fig. 

6(b), the reproducibility improve, causing the drop at approximately 1200 s to be reduced and the 

opposite phase after 1600 s to be almost eliminated. 

From the above results, it suggests that increasing the resolution of the mean values is more effective 

than using the group delay time standard deviations to create a phase spectrum model. Moreover, mean 

values of about four divisions should be used to reproduce the originally observed waveform. 

 

3.3.3 Waveform reconstruction using the amplitude spectrum model 

Subsequently, we reconstruct waveforms using various amplitude spectra models and the phase 

spectrum obtained from the observed waveform to design a method for creating amplitude spectra 

models. Then, we compare the reconstructed waveform with an initially observed one to confirm the 

effects of the amplitude spectrum model. 

Figures 8 and 9 show the amplitude spectra models and reconstructed waveforms as the division 

number of 𝑓(𝑗,𝑘) is gradually increased in the phase spectrum model described above. Specifically, 

while Fig. 8(a) shows the amplitude spectrum model of one-division, Fig. 9(a) shows that of four-

division. These figures show the amplitude spectrum model by red circles and the amplitude spectrum 

obtained from the observed waveform by blue circles. Subsequently, the amplitude spectrum model 

approximate the amplitude spectrum of the observed waveform by increasing the division number at the 

long-period side, where j is small. Conversely, Figs. 8(b) and 9(b) show the reconstructed waveforms 

using these amplitude spectra models by solid red lines and the observed superimposed waveforms by 

solid blue lines. Even with the one-division average shown in Fig. 8(b), the shape of the observed 

waveform is well reproduced. Investigations also reveal that the four-division average shown in Fig. 

9(b) almost match the observed waveform, indicating that although reproducibility is improved by 

increasing the division number, the effect is small. 
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The above results show a difference in the sensitivity of the averaging modeling method between 

the phase spectrum model and the amplitude spectrum model. Therefore, it is considered that the phase 

spectrum model dominated waveform shape relatively more than the amplitude spectrum model. 

 

3.3.4 Waveform reconstruction using the phase/amplitude spectra models 

In Sections 3.3.2 and 3.3.3, we model only one kind of spectra, either phase or amplitude spectra, to 

create a reconstructed waveform. In this section, we construct the average models for both kinds of 

spectra, set the division number of 𝑓(𝑗,𝑘)  using the above methods, reconstruct the corresponding 

waveforms, and confirm the reproducibility for the observed waveform. 

Figure 10 shows the reconstructed waveforms for the phase and amplitude spectra models. A solid 

pink line here shows the one-division average, a solid green line shows the two-division average, and a 

solid red line shows the four-division average. We also superimpose the figure's originally observed 

waveform on a solid blue line. Investigations reveal that the reproducibility of the reconstructed 

waveform for the observed waveform improve as the division number increase. This result is almost 

consistent with the reconstructed waveforms shown in Figs. 6(b) to 7(b) when the phase spectrum model 

was examined. As a result, the phase spectrum model is more dominant than the amplitude spectrum 

model when assess from the viewpoint of influence on reproducibility. 

Fig. 9 Amplitude spectrum model with four-division average and reconstructed waveform 

 

(a) Amplitude spectrum model (b) Reconstructed and observed waveform 

(a) Amplitude spectrum model (b) Reconstructed and observed waveform 

 
Fig. 8 Amplitude spectrum model with one-division average and reconstructed waveform 
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3.4 Quantitative dissimilarity evaluation between the observed and reconstructed waveforms 

 

Section 3.3 confirm the effects of the phase and amplitude spectrum models on reconstructed waveforms 

through the superimposition of observed and reconstructed waveforms. Afterward, their dissimilarities 

are qualitatively discussed. However, in Section 3.4, we attempt to quantitatively evaluate the effects of 

phase and amplitude spectra models in more detail by applying the Jensen–Shannon (JS) divergence11) 

(which has been used in machine learning), focusing on the dissimilarity between the phase/amplitude 

spectra of the observed waveform and the phase/amplitude spectra model, to create a reconstructed 

waveform. 

 

3.4.1 Method of quantitative dissimilarity evaluation between two waveforms using JS divergence 

JS divergence11) is originally an index that measures the dissimilarity between two probability-based 

distributions whose value is greater than or equal to 0. Notably, while its value is 0 if two probability 

distributions are exactly consistent, its value is greater if these distributions differ. Assuming two 

probability distributions 𝑝(𝑥) and 𝑞(𝑥), the JS divergence (𝐷𝐽𝑆) can be calculated using Eqs. (8)–(10). 

 

𝐷𝐽𝑆(𝑝, 𝑞) =
1

2
𝐷𝐾𝐿(𝑝,𝑀) +

1

2
𝐷𝐾𝐿(𝑞,𝑀) (8) 

 

𝑀(𝑥) =
1

2
𝑝(𝑥) +

1

2
𝑞(𝑥) (9) 

 

𝐷𝐾𝐿(𝑝, 𝑞) =∑𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
, (10) 

 

where 𝐷𝐾𝐿(𝑝, 𝑞) denotes the Kullback–Leibler (KL) divergence between the probability distributions 
𝑝(𝑥) and 𝑞(𝑥). 

In this paper, assuming that the above 𝑝(𝑥) and 𝑞(𝑥) are the phase spectrum (𝑝𝑃) of the observed 
waveform and the phase spectrum model (𝑞𝑃) of the reconstructed waveform or the amplitude spectrum 
(𝑝𝐴) of the observed waveform and the amplitude spectrum model (𝑞𝐴) of the reconstructed waveform, 
the dissimilarity of the two waveforms (the observed and reconstructed waveforms) can be calculated 

using the index 𝐷𝐽𝑆_𝑊, as defined by Eq. (11). 

 

𝐷𝐽𝑆_𝑊 = √𝐷𝐽𝑆_𝑃
2 + 𝐷𝐽𝑆_𝐴

2 (11) 

 

𝐷𝐽𝑆_𝑃 = 𝐷𝐽𝑆(𝑝𝑃 , 𝑞𝑃), 𝐷𝐽𝑆_𝐴 = 𝐷𝐽𝑆(𝑝𝐴, 𝑞𝐴), (12) 

 

where 𝐷𝐽𝑆_𝑃 represents the JS divergence related to the phase spectrum and 𝐷𝐽𝑆_𝐴 represents the JS 

divergence related to the amplitude spectrum, respectively. 

Afterward, while 𝑝𝑃 and 𝑞𝑃 can be defined by Eq. (13), 𝑝𝐴 and 𝑞𝐴 can be defined by Eq. (14). 
 

𝑝𝑃(𝑘) =
𝜙𝑘

2𝑗𝑚𝑎𝑥−1
, 𝑞𝑃(𝑘) =

𝜙𝑘
′

2𝑗𝑚𝑎𝑥−1
, (𝑘 = 1,⋯ , 2𝑗𝑚𝑎𝑥−1 ) (13) 

 

𝑝𝐴(𝑘) =
𝑋𝑘

|𝑥|𝑚𝑎𝑥
∙

1

2𝑗𝑚𝑎𝑥−1
, 𝑞𝐴(𝑘) =

𝑋′𝑘
|𝑥|𝑚𝑎𝑥

∙
1

2𝑗𝑚𝑎𝑥−1
, (𝑘 = 1,⋯ , 2𝑗𝑚𝑎𝑥−1 ), (14) 

 

where 𝜙𝑘  and 𝑋𝑘  represent the phase/amplitude spectra obtained by Fourier transforming the 

observed waveform, 𝜙𝑘
′  and 𝑋′𝑘 represent the phase/amplitude spectra models obtained by Fourier 

transforming the reconstructed waveform, and |𝑥|𝑚𝑎𝑥 represents the absolute value of the maximum 
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amplitude of the observed waveform, where 𝑋𝑘  and 𝑋′𝑘  are divided by |𝑥|𝑚𝑎𝑥  to normalize the 

amplitudes of the observed and reconstructed waveforms, respectively. 

Since 𝜙𝑘  and 𝜙𝑘
′  have [−𝜋~𝜋] as their principal values, they result in an uncertainty of 2𝜋. 

Therefore, both 𝑝𝑃  and 𝑞𝑃  must be positive, just as the probability distributions 𝑝  and 𝑞  are 
positive, to apply JS divergence. Hence, we add 2π to 𝜙𝑘 and 𝜙𝑘,

′  which are less than or equal to 0, 

to make them fall within the range of 0 < (𝜙𝑘 , 𝜙𝑘
′ ) ≤ 2𝜋. 

Finally, we separately examine the systematic changes in phase shift or amplitude for a set of sine 

waves having similar periods to confirm the basic properties and applicability of 𝐷𝐽𝑆_𝑊 in Eq. (11). 

From our investigations, 𝐷𝐽𝑆_𝑊  quantitatively show dissimilarities in the two different waveforms 

while preserving the basic properties of the JS divergence. 

 

3.4.2 Results of quantitative dissimilarity evaluation 

Next, we attempt to quantitatively evaluate the dissimilarity between the observed waveform and 

various reconstructed waveforms, using the dissimilarity index 𝐷𝐽𝑆_𝑊 of Eq. (11), to confirm the effects 

of modeling the phase/amplitude spectra discussed in Section 3.3. For each reconstructed waveforms in 

Figs. 4(b) to 9(b) and 10, 𝐷𝐽𝑆_𝑃 , 𝐷𝐽𝑆_𝐴 , and 𝐷𝐽𝑆_𝑊  are calculated for the observed waveform. The 

maximum number of j used for these calculations is 12, Table 1 shows a list of the calculation results, 

and these results are shown in Fig. 11. 

From the top (Nos. 1–5) of Table 1, we show a case where the group delay time is almost the same 

as the observed waveform in Fig. 4, another where the random number generation considers the standard 

deviation of the group delay time (Fig. 5), one where only the average value of the group delay time is 

reflected (Fig. 6), and the case of two-division or four-division averages (shown in Fig. 7) for the group 

delay time in which the division number in the support interval is increased. Each phase spectrum is 

called “quasi-observation,” “random number model,” “one-division model,” “two-division model” and 

“four-division model,” respectively. In the case of these reconstructed waveforms, since the amplitude 

spectrum of the observed waveform is used, 𝐷𝐽𝑆_𝐴 is zero, and 𝐷𝐽𝑆_𝑊 = 𝐷𝐽𝑆_𝑃. The 𝐷𝐽𝑆_𝑊 of these 

reconstructed waveforms are, in descending order, 0.30 for the one-division model, 0.28 (difference 

0.02) for the random number model, 0.23 (0.05) for the two-division model, 0.15 (0.08) for the four-

division model, and 0.07 (0.08) for quasi-observation. These rankings agree with the ones in which the 

reconstructed waveforms are improved in Section 3.3.2. Additionally, the value of the differences 

between the models described above is consistent with the qualitative improvement in reproducibility. 

Following the above, the middle row (Nos. 6–8) of Table 1 shows the results of the amplitude spectra 

models, reflecting a case in Fig. 8 (one-division model) indicating the average value of the observed 

waveform’s amplitude spectrum and the case of a two-division average or a four-division average (Fig. 

9) with an increased division number in the support interval (two- or four-division model). Investigations 

reveal that the 𝐷𝐽𝑆_𝑊 is 0.09 for the one-division model, 0.08 (difference 0.01) for the two-division 

model, and 0.07 (0.01) for the four-division model, agreeing with the qualitative reproducibility in 

Section 3.3.3. Regarding the modeling method based on the divided average of the phase/amplitude 

spectra models, we observe that the 𝐷𝐽𝑆_𝑃  is 0.30–0.15 in the case of the phase spectrum model, 

whereas the 𝐷𝐽𝑆_𝐴 is 0.07–0.03 in the case of the amplitude spectrum model. These values represent 

smaller influence of the modeling method in the amplitude spectrum model. Overall, the results 

quantitatively show that the phase spectrum model relatively dominates the waveform shape more than 

the amplitude spectrum model in Section 3.3.3. 

Finally, the lower part (Nos. 9–11) of Table 1 shows the results of the reconstructed waveform by 

both the phase/amplitude spectrum models. Investigations reveal that the 𝐷𝐽𝑆_𝑊 is 0.30 for the one-

division model, 0.24 for the two-division model, and 0.15 for the four-division model, which is almost 

similar to each 𝐷𝐽𝑆_𝑃. From these results, it can be confirmed that the influence of the phase spectrum 

model is greater than that of the amplitude spectrum model on the dissimilarity of the reconstructed 

waveform. It is also quantitatively shown that the shapes of the reconstructed waveforms shown in Fig. 

10 are almost the same as in Figs. 6(b)–7(b). 
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Subsequently, the calculation results shown in Table 1 are plotted on a single graph in Fig. 11, where 

the Cartesian and polar coordinate systems are displayed superimposed, with 𝐷𝐽𝑆_𝐴  on the X axis, 

𝐷𝐽𝑆_𝑃 on the Y axis, and 𝐷𝐽𝑆_𝑊 plotted as the dynamic radius (distance from the origin) of the polar 

coordinate system based on Eq. (11). In the figure, blue circles represent the phase spectrum model, red 

circles represent the amplitude spectrum model, and green circles represent the results using both the 

phase/amplitude spectra models, respectively. The number in each circle corresponds to the No. in Table 

1. This figure helps to visually understand the dissmilarities between each of the above waveforms. 

Considering the qualitative results of the waveform comparison in Figs. 4(b) to 9(b) and 10, including 

the quantitative results using the dissimilarity index 𝐷𝐽𝑆_𝑊  in Fig. 11, one can find that the two 

waveforms almost coincide when 𝐷𝐽𝑆_𝑊  is less than 0.1. However, such thresholds should be set 

individually according to the purpose of use. Since this paper aime to create phase/amplitude spectra 

models, it is necessary to show how much simplification is allowed. Consequently, by identifying 𝐷𝐽𝑆_𝑊 

as a threshold value of 0.15 greater than 0.1, we adopt the “four-division model” for the phase/amplitude 

spectra models. 

 

 

Table 1 List of the calculation results of dissimilarity between observed waveform (G802) and 

reconstructed waveforms 

No. 

Combinations of phase/amplitude 

spectra in waveform reconstruction 𝐷𝐽𝑆_𝑃 

(Y axis*1) 

𝐷𝐽𝑆_𝐴 

(X axis*1) 

𝐷𝐽𝑆_𝑊 

(Polar 

coordinate*1) 

Reference 

Phase Amplitude Figures Sections 

1 Quasi-Obs. 

Obs. 

0.07 

0.00 

0.07 Fig. 4(b) 

Section 3.3.2  

2 Random Model 0.28 0.28 Fig. 5(b) 

3 1-division Model 0.30 0.30 Fig. 6(b) 

4 2-division Model 0.23 0.23 - 

5 4-division Model 0.15 0.15 Fig. 7(b) 

6 

Quasi-Obs. 

1-division Model 

0.07 

0.07 0.09 Fig. 8(b) 

Section 3.3.3  7 2-division Model 0.04 0.08 - 

8 4-division Model 0.03 0.07 Fig. 9(b) 

9 1-division Model 1-division Model 0.30 0.07 0.30 

Fig. 10 Section 3.3.4  10 2-division Model 2-division Model 0.23 0.04 0.24 

11 4-division Model 4-division Model 0.15 0.03 0.15 

 

Fig. 11 Dissimilarity index 𝐷𝐽𝑆_𝑊 between observed and reconstructed waveforms 
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3.5 Uncertainty of the initial integral value via the phase spectrum model 

 

Although the reconstructed waveform in Section 3.3 use the phase spectra models obtained by 

integrating various group delay time models in the angular frequency domain, the phase spectrum values 

of the observed waveform are adopted as the initial integral values. Since these values represent the 

interval boundary determined for each support interval 𝑓(𝑗), two values of ±0.5𝜋 are observed when 

the observed waveform is examined. However, it is uncertain which value will be obtained. Hence, in 

the generation of an artificial tsunami waveform described later, reconstructed waveforms with many 

initial integral values that combine two values for each 𝑓(𝑗)  should be created to investigate their 

effects since it is impossible to specify the initial integral value in advance. This also indicates the need 

for a method to extract appropriate ones from many combinations. This section investigates the influence 

of initial integral value uncertainty and the extraction method of combining initial integral values to 

create a phase spectrum model from a group delay time model. 

 

3.5.1 Methodology 

When creating a phase spectrum model from the group delay time model in Section 3.3, one value is 

given as the initial integral value for each support interval 𝑓(𝑗). However, since the needed scale factor 
j ranges from 2 to 14, 13 values are needed. Consequently, during investigations of the observed 

waveform, results are either 0 or π when j is 2, and they are either 0.5𝜋 or −0.5𝜋 when j is 3 to 14. 
Therefore, the total number of initial integral value combinations is 213. 

Subsequently, we create reconstructed waveforms from these combinations, estimate the 

dissimilarity index 𝐷𝐽𝑆_𝑊 for the observed waveform and a water level 𝐻1500 for the reconstructed 

waveform at 1500 s, which is the maximum water level generation time on the observed waveform, 

followed by an organization of these relationships. Then, to create reconstructed waveforms for the 

observed waveform G802, both the phase/amplitude spectra models are comprised of “four-division 

models” based on the results of Sections 3.3 and 3.4, and the maximum number of j used to calculate 

𝐷𝐽𝑆_𝑊 is 12 as in Section 3.4. 

 

3.5.2 Results 

Figure 12 shows a 𝐷𝐽𝑆_𝑊 and 𝐻1500 scatterplot for the reconstructed waveforms of 2
13 initial integral 

value combinations. With the horizontal axis representing 𝐷𝐽𝑆_𝑊  and the vertical axis representing 

𝐻1500, each reconstructed waveform is represented by one blue dot mark. In the figure, any case in 
which the phase spectrum value of the observed waveform used as the initial integral value is indicated 

by a red circle, a red square shows any case in which the value deviated 𝜋 from the integral initial value 
of the observed waveform, and 𝐻1500 of the observed waveform is indicated by a red dashed line. 

Investigations reveal that while the red circle indicating the phase spectrum value of the observed 

waveform as the initial integral value show the smallest 𝐷𝐽𝑆_𝑊 at 0.15, 𝐻1500 is 6.44 m, which is close 

to the water level in the observed waveform (6.66 m). Furthermore, although the 𝐷𝐽𝑆_𝑊  differ, we 

observe cases where 𝐻1500 is close to the water level of the observed waveform. These reconstructed 
waveforms are numbered 1–4 in a descending 𝐷𝐽𝑆_𝑊 order (Fig. 13). 

Investigations also reveal that although the reconstructed waveform 1 is the case in which the initial 

integral value is an observed waveform, and the reconstructed waveform 2 is almost the same as No. 1, 

only a slight difference is observed around 2000 s. However, the reconstructed waveforms 3 and 4 almost 

coincide with the reconstructed waveforms 1 and 2 because the value of the amplitude spectrum model 

of the support interval (j is 12) shown in Fig. 9(a) is very small. These results suggest that even if there 

is a difference in the phase spectrum model of this support interval, it will be difficult for this difference 

to appear in the waveform’s amplitude. Incidentally, the case indicated by a red square in Fig. 12 shows 

the exact opposite of the reconstructed waveform 1 and corresponds to the case of an upside-down 

inverted waveform, using the initial integral value of the π deviation. 

From these results, we focus on 𝐻1500 of the reconstructed waveform as the method to extract the 

reconstructed waveform close to the observed waveform from many candidates due to the uncertainty 
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of the initial integral value and obtain the prospect of extracting targets using 𝐻1500 of the observed 

waveform as the target water level. Hence, the applicability of this extraction method is largely due to 

the fact that the maximum water level generation time 𝑡𝑎 is fixed in advance. 
 

 

4. GENERATING ARTIFICIAL TSUNAMI WAVEFORMS USING STATISTICAL 

METHODS 

 

Based on the artificial tsunami waveform requirements in Chapter 2 and the results from basic studies 

on modeling phase/amplitude spectra using the observed waveform in Chapter 3, this chapter proposes 

a method for generating artificial tsunami waveforms that can closely/organically link PTHA and 

tsunami fragility analysis. Then, we present an example of the artificial tsunami waveforms generated 

using this method, thereby showing its usefulness. 

 

4.1 Procedure for generating the phase/amplitude spectra models and artificial tsunami 

waveforms using a group of analytical waveforms 

 
By defining many scenario tsunamis to consider the uncertainty of tsunami occurrence, many analytical 

waveforms have been obtained at the PTHA target point. As listed in Requirement 3 of Chapter 2, the 

analytical waveforms include local/regional characteristics, such as the seafloor topography, the 

earthquake type around the target area, and the diversity of tsunami sources. Therefore, based on the 

basic study results in Chapter 3, we extract the information needed for modeling the phase/amplitude 

spectra from the analytical waveforms to create models using these statistics. Then, we propose a method 

for generating an artificial tsunami waveform using statistical methods. 

Fig. 13 The reconstructed waveforms considering the uncertainty of initial integral values of the phase 

spectra models in which 𝐻1500 are close to that of the observed waveform 
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Figure 14 shows a flowchart of the procedure for generating phase/amplitude spectra models and 

artificial tsunami waveforms using analytical waveforms. Since (1) Preprocessing of analytical 

waveforms and (4) Waveform reconstruction using phase/amplitude spectra models are similar in 

Chapter 3, we omit their explanations here. Thus, only (2) Generation of phase spectra models and (3) 

Generation of amplitude spectra models are described in detail below. 

First, we describe (2): The method for generating phase spectra models using analitical waveforms. 

In the basic study of Chapter 3, while the observed waveform is only targeted, the phase spectra models 

are generated here using the analytical waveforms from multiple scenario tsunamis. Then, as shown in 

the first half of Fig. 14, we conduct wavelet transformation on each analytical waveform, followed by 

the mean value 𝜇(𝑗,𝑘)𝑡𝑔𝑟 calculation of the group delay time for each division range 𝑓(𝑗,𝑘). Since the 

procedure up to this point is similar to Chapter 3, it is conducted for all analytical waveforms. In the 

Fig. 14 The procedure for generating phase/amplitude spectra models and artificial tsunami waveforms 
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second half, however, we calculate the mean �̃�(𝑗,𝑘)𝑡𝑔𝑟 and standard deviation 𝜎(𝑗,𝑘)𝑡𝑔𝑟 based on the 

data group of the mean values for these group delay times, followed by a creation of the group delay 

time model 𝑡𝑔𝑟
′ (𝑗,𝑘)

 using the MC method, assuming normal distributions based on these statistics. 

Finally, the group delay time model 𝑡𝑔𝑟
′ (𝑗,𝑘)

 is integrated by ω into the phase spectrum model 𝜙′(𝑗)(𝜔), 

thereby generating phase spectra models for all initial integral value combinations based on the 

uncertainty results of the initial integral value in Section 3.5. 

Subsequently, (3): The method for generating amplitude spectra models using analytical waveforms 

is described. The procedure for generating them is also divided into first and second halves, as shown 

in Fig. 14, where the first half is the same procedure as the basic study in Chapter 3, and the second half 

is the newly added procedure. In the first half, we Fourier transform each analytical waveform to obtain 

the amplitude spectrum 𝐴(𝜔). Then, we calculate the mean value 𝜇(𝑗,𝑘)𝑎𝑚𝑝 of 𝐴(𝑗,𝑘) for each 𝑓(𝑗,𝑘) 

as in the phase spectrum model. The procedure up to this step is conducted for all analytical waveforms. 

Conversely, in the second half, an average amplitude spectrum model 𝜇′(𝑗,𝑘)𝑎𝑚𝑝 is created using the 

data group of 𝜇(𝑗,𝑘)𝑎𝑚𝑝 for each analytical waveform. Based on the correlation between 𝜇′(𝑗,𝑘)𝑎𝑚𝑝 

and 𝐻1500 in the analytical waveform, we subsequently model it using the regression formula in Eq. 

(15), employing 𝐻1500 as an explanatory parameter to perform regression analysis by the least squares 

method and determine the coefficients 𝛼(𝑗,𝑘) and 𝛽(𝑗,𝑘). Details are described in the next section with 

examples. The symbol “ln (·)” in Eq. (15) represents the natural logarithm. 

 

ln (𝜇′(𝑗,𝑘)𝑎𝑚𝑝) = 𝛼(𝑗,𝑘) + 𝛽(𝑗,𝑘) × ln(𝐻1500) (15) 

 

Equation (15) expresses the average trend of a data group with variability. There are residuals 

between this equation and the individual source data. As these residuals are a modeling uncertainty that 

must be considered at the generating stage of the amplitude spectrum model described later, we calculate 

their standard deviation 𝜎′(𝑗,𝑘)𝑎𝑚𝑝. 

Next, we set the target water level 𝐻𝑡  of the artificial tsunami waveform. Then, sampling is 

performed employing the MC method to generate the amplitude spectrum model 𝐴′(𝑗,𝑘)(𝜔), assuming 

a lognormal distribution using 𝜇′(𝑗,𝑘)𝑎𝑚𝑝 and 𝜎′(𝑗,𝑘)𝑎𝑚𝑝 obtained by substituting 𝐻𝑡 into 𝐻1500 in 

Eq. (15). 

After generating the phase/amplitude spectra models in the previous procedure, we perform 

waveform reconstruction, using the same procedure as Chapter 3 to obtain the artificial tsunami 

waveform. Due to the uncertainty of the initial integral value, the number of phase spectra models is 

2𝑗𝑚𝑎𝑥−2 at this stage, resulting in similar number of candidates for the artificial tsunami waveforms. 

Therefore, based on the results in Section 3.5, we extract one from many candidates for the artificial 

tsunami waveforms whose water level at the preset maximum water level occurrence time 𝑡𝑎 is close 

to the target water level. 

Since the above procedure adopt analytical waveforms for the scenario tsunamis with regional 

characteristics, these regional characteristics are reflected in the phase/amplitude spectra models. 

Additionally, by adopting a probabilistic model and the MC method for the phase/amplitude spectra 

models, statistically setting reasonable and explanatory variabilities becomes possible. As a result, 

multiple artificial tsunami waveforms with different shapes can be generated even if the target water 

level is the same. By adopting a regression equation, using 𝐻1500 as an explanatory parameter in Eq. 

(15) for the generation of the amplitude spectrum model, and extrapolating the range of the highest water 

level of the analytical waveforms for the scenario tsunamis, setting the target water level beyond this 

range while ensuring rational explanatory also becomes possible. 

Subsequently, since the only information obtained from the hazard curve is the maximum water 

level, which is the output of PTHA, we further conduct regression analyses using only 𝐻1500 as an 

explanatory parameter in Eq. (15). Then, we make the most effective use of the horizontal axis index of 

the hazard curve to ensure continuity between PTHA and tsunami fragility analysis, thereby enhancing 
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the practicality of the proposed method for generating an artificial tsunami waveform. 

Tentatively, as in the method of Sato et al.6), it is possible to construct a regression equation, using 

the magnitude and epicenter distance of the earthquake as explanatory parameters. However, since these 

settings are required as input values when generating an artificial tsunami waveform in such cases, 

difficulties in setting these values with statistically rational explanations are expected, indicating the 

need for further examinations. 

 

4.2 Estimation of artificial tsunami waveforms 

 
4.2.1 Group of analytical waveforms for scenario tsunamis 

This paper has proposed a method to generate artificial tsunami waveforms for close/organic linkages 

between PTHA and tsunami fragility analysis. Therefore, this section applies the proposed method and 

estimates artificial tsunami waveforms using the results of previous PTHA studies. 

An example of PTHA is our previous study18), where a location of 150 m depth off the coast of 

Fukushima Daiichi Nuclear Power Station was defined as the hazard evaluation point. Since the assumed 

tsunami sources were earthquake-induced tsunamis, the characterizing model19) for earthquake-induced 

tsunamis was set considering various earthquake magnitudes and earthquake types along the Japan 

Trench, followed by many analytical waveform calculations. Subsequently, “Relative maximum water 

level rise” was used as a horizontal axis tsunami hazard curve index to consider the effects of crustal 

uplift and subsidence according to fault movement at the power plant's location. Then, we calculated 

the relative maximum water level rise by subtracting crustal deformation (with a positive uplift side) at 

the power plant's location from the maximum water level rise at the hazard assessment point in each 

scenario tsunami. This approach is an important viewpoint for linking PTHA and tsunami fragility 

analysis via artificial tsunami waveforms. For details on the analysis conditions of PTHA, please refer 

to the original paper. 

A similar index called “Relative maximum water level rise” is also applied to the analytical 

waveforms to generate artificial tsunami waveforms in this paper. Here, the analytical waveforms of 

many scenario tsunamis at hazard assessment points are treated as relative values (relative water levels 

expressed as the waveform) by subtracting the crustal deformation (with a positive uplift side) associated 

with each fault movement from the water level of the analytical waveform. However, since this approach 

is related to the fact that the artificial tsunami waveform format proposed in this paper is the input 

waveform for the tsunami propagation and run-up analysis, these analyses can not directly consider 

crustal deformation according to fault movement. Nevertheless, we propose that the influence of crustal 

deformation can still be indirectly considered by generating artificial tsunami waveforms based on 

analytical waveforms expressed by relative values. 

Figure 15 shows the analytical waveforms comprising 118 scenario tsunamis selected from the 

interplate earthquakes assumed in the PTHA18). The waveforms in the figure are displayed by classifying 

the relative maximum water levels in 6 m increments. As in the preprocess of the observed waveform 

in 3.3.1, the relative maximum water level occurrence time 𝑡𝑎 is set as 1500 s, the duration time 𝑇 as 

3000 s, the taper processing time 𝑇𝑡 as 600 s, 𝑗𝑚𝑎𝑥 of the total number of data 2𝑗𝑚𝑎𝑥 , which is applied 

zero data, as 15, and the data interval in each waveform as one second. Then, each waveform has the 

characteristic with a two-step rise12) (water level rise), as seen in the waveform observed by the GPS 

buoy during the Tohoku Earthquake Tsunami, and we can see them the two-step rise variabilities in 

water level and waveform. 

Conversely, Table 2 shows a list of selected scenario tsunami sources. In the table, the No. of 

scenario tsunami sources, the moment magnitude Mw, and the placement pattern symbol for slip 

distribution are shown. All these items are referred to as the values and symbols from the previous 

study18). The symbols for the placement slip distribution pattern are shown in the schematic of the 

tsunami source in Fig. 16. The symbols “_A, _B, and _C” represent the placement patterns of the large 

slip area in the tsunami source, indicating the northern, central, and southern, respectively, whereas the 

symbols “1,..., 5” represent the placement patterns in which the placement, shape, and number of super-
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large slip areas are changed. Here, while 1–3 are cases of a super-large slip area changing, 4 and 5 are 

the changing shape in two super-large slip areas. 

In the analytical waveforms for the scenario tsunamis before selection, a mixture of cases is 

observed: where the maximum water level at the hazard assessment point occurs at a time zone that 

Table 2 Selected scenario tsunami sources 
津波波源

No.
Mw

404 8.3 404
409 8.7 409
410 8.7 410
413 8.9 413_C1

414_A1
414_B1
414_C1

415 8.8 415
416 9.1 416_C3 416_C4 416_C5

417_B1
417_C1
418_A1
418_B1
418_C1
419_B1 419_B2 419_B3 419_B4 419_B5
419_C1 419_C2 419_C3 419_C4 419_C5
420_A1 420_A2 420_A3 420_A4 420_A5
420_B1 420_B2 420_B3 420_B4 420_B5
420_C1 420_C2 420_C3 420_C4 420_C5

421_A3 421_A4 421_A5
421_B1 421_B2 421_B3 421_B4 421_B5
421_C1 421_C2 421_C3 421_C4 421_C5

615_B4 615_B5
615_C1 615_C2 615_C3 615_C4 615_C5

619 9.3 619_C1 619_C2 619_C3 619_C4 619_C5
620_B1 620_B2 620_B3 620_B4 620_B5
620_C1 620_C2 620_C3 620_C4 620_C5

623 9.4 623_C1 623_C2 623_C3 623_C4 623_C5
624_B1 624_B2 624_B3 624_B4 624_B5
624_C1 624_C2 624_C3 624_C4 624_C5

626 9.5 626_C1 626_C2 626_C3 626_C4 626_C5
627_B5

627_C1 627_C2 627_C3 627_C4 627_C5
628 9.5 628_C1 628_C2 628_C3 628_C4 628_C5

629_B2
629_C1 629_C2 629_C3 629_C4 629_C5

630 9.6 630_C1 630_C2 630_C3 630_C4 630_C5

419 9.2

414 8.9

すべり分布の配置パターン

417 9.0

418 9.0

420 9.1

421 9.2

615 9.3

629 9.5

620 9.3

624 9.4

627 9.4

Placement pattern of slip distribution 
Source 
No. 

6 m ≦ Hmax < 12 mHmax < 6 m

18 m ≦ Hmax12 m ≦ Hmax < 18 m

Fig. 15 The analytical waveforms comprising 118 scenario tsunamis selected from the interplate 

earthquakes assumed in the PTHA18) 
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arrives directly from a source area (Direct Wave) and where the waves reflected from the coastal area 

return and overlap (Superimposed Wave). Considering that the artificial tsunami waveform is an input 

condition of the tsunami propagation and run-up analysis on the tsunami fragility analysis for facilities 

located on the coast, adding the latter superimposed waves is not necessary. Therefore, when estimating 

the artificial tsunami waveform, we decide to exclude the latter. However, to distinguish between direct 

and superimposed waves, it remains necessary to know when the effects of reflected waves begin to 

appear during the analytical waveform. 

Based on the above, we determine the hypothetical tsunami source model as a preparatory analysis, 

then perform two tsunami propagation analyses using a standard topographic model and another 

topographic model for passing waves, followed by a comparison of the analytical waveforms at hazard 

assessment points. In the latter topographic model, shallow waters and land area's elevation at an altitude 

of −100 m or more are uniformly changed to −100 m to suppress reflection from land. As a result, the 

reflection effect is confirmed about 45 min after the earthquake occurrence time. Therefore, we select 

scenario tsunamis induced by interplate earthquakes treated in the hazard analysis based on this result, 

in which the maximum water level occur before 45 min, and its level is 1 m or more. The selected 

scenario tsunamis shown in Table 2 are all sources at which the shallow and deep areas between the 

plates are destroyed simultaneously. 

The abovementioned selection method and results for the analytical waveforms are trial calculation 

examples showing artificial tsunami waveforms. However, when using the proposed method in practice, 

the selection of analytical waveforms should be considered based on individual situations. 

 

4.2.2 Example of creating phase/amplitude spectra models using a group of analytical waveforms 

Following the procedure in Fig. 14, this study successfully generate phase/amplitude spectra models 

using the analytical waveforms described above. 

First, the mean value �̃�(𝑗,𝑘)𝑡𝑔𝑟 and the standard deviation 𝜎(𝑗,𝑘)𝑡𝑔𝑟 of the group delay time are 

calculated for each 𝑓(𝑗,𝑘) after the wavelet transform of 118 analytical waveforms. The calculation 

results are shown in Table 3. Since the values in the table ought to be expressed in radians, we convert 

from seconds to radians by multiplying with 2𝜋 𝑇𝑑⁄   (𝑇𝑑 : Total data time (= 1 × 2 15 seconds)). 

Incidentally, the time 1500 s, at which the relative maximum water level occur, is 0.29 in radian, which 

is helpful when considering the distribution in Fig. 17. Adopting examples of j = 5 and 7, Fig. 17 shows 

a histogram of 𝜇(𝑗,𝑘)𝑡𝑔𝑟 from the source data of the calculated values in Table 3. Investigations reveal 

Fig. 16 The placement slip distribution patterns on scenario tsunami sources 
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that while some of these distributions are clustered around the relative maximum water level time, 0.29 

rad, some are not, causing the phase characteristics of each j and k in the analytical waveforms to be 

shown here. 

Next, the Fourier transform obtain the amplitude spectrum for the analytical waveforms, followed 

by average amplitude spectrum calculations at each j and k. Then, regression analysis is performed using 

Eq. (15) to calculate coefficients 𝛼(𝑗,𝑘), 𝛽(𝑗,𝑘) and 𝜎′(𝑗,𝑘)𝑎𝑚𝑝. While the calculation results are shown 

in Table 4, scatterplots of the source data 𝜇(𝑗,𝑘)𝑎𝑚𝑝 and the regression models are shown in Fig. 18 as 

an example of j = 5 and 7. In this figure, the horizontal axis represents the relative maximum water level 

𝐻1500, the vertical axis represents 𝜇(𝑗,𝑘)𝑎𝑚𝑝, as displayed in a double logarithmic graph, the solid line 

represents the regression model of Eq. (15), and the dashed line represents the standard deviation ±1𝜎 
from the regression model, respectively. Since we observe correlation between 𝜇(𝑗,𝑘)𝑎𝑚𝑝 and 𝐻1500, 

whose tendencies are similar to another j and k, we decide to set a regression model using Eq. (15), 

where the intercept 𝛼(𝑗,𝑘), slope 𝛽(𝑗,𝑘), and standard deviation 𝜎′(𝑗,𝑘)𝑎𝑚𝑝 of the regression models 

show different values for each j and k. The amplitude characteristics of each j and k of the analytical 

waveforms are shown. 

From the analysis, while a normal distribution is assumed as the group delay time model based on 

th e distribution of the group delay time shown in Fig. 17, a lognormal distribution with the regression 

model as the mean is assumed as the amplitude spectrum model based on the regression analysis results 

Fig. 17 Histograms of mean group delay times 𝜇(𝑗,𝑘)𝑡𝑔𝑟 of the analytical waveforms 

Table 3 Mean and standard deviation of group delay time model [unit: rad] 

j 12 11 10 9 8 7

k 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

�̃� (𝑗,𝑘)𝑡𝑔𝑟
0.46 0.51 0.53 0.54 0.53 0.52 0.50 0.40 0.44 0.37 0.34 0.30 0.30 0.29 0.28 0.29 0.29 0.29 0.29 0.31 0.33 0.29 0.29 0.35

𝜎(𝑗,𝑘)𝑡𝑔𝑟 0.14 0.13 0.13 0.10 0.14 0.13 0.13 0.04 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.05

j 6 5 4 3 2

k 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

�̃� (𝑗,𝑘)𝑡𝑔𝑟
0.33 0.31 0.28 0.41 0.48 0.31 0.25 0.10 -0.28 0.13 0.24 0.70 0.77 0.47 0.30 0.02 -0.96 0.31 0.32 0.32

𝜎(𝑗,𝑘)𝑡𝑔𝑟 0.05 0.05 0.06 0.13 0.15 0.04 0.03 0.08 0.12 0.06 0.03 0.07 0.09 0.01 0.02 0.07 0.05 0.02 0.02 0.02
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of the mean amplitude spectrum shown in Fig. 18. We also generate normal random numbers by the MC 

method, including group delay time models and amplitude spectra models. During random number 

generation, the probability distribution of each j and k is assumed to be independent. Figure 19 shows 

the group delay time model, and Fig. 20 shows the amplitude spectrum model when the target water 

Table 4 Regression coefficients and standard deviations of amplitude spectrum model 
 

j 12 11 10 9 8 7

k 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

𝛼(𝑗,𝑘) -7.23 -6.95 -6.64 -6.24 -5.93 -5.68 -5.25 -1.72 -0.16 -0.61 -0.49 -0.24 0.27 0.60 2.49 2.80 3.46 3.72 3.96 4.00 3.98 3.87 3.93 3.90

𝛽(𝑗,𝑘) 0.82 0.80 0.80 0.80 0.81 0.83 0.83 0.48 0.52 0.69 0.98 1.12 1.20 1.25 0.70 0.82 0.62 0.55 0.60 0.85 1.03 1.15 1.21 1.21

𝜎 (𝑗,𝑘)𝑎𝑚𝑝
0.41 0.44 0.47 0.47 0.47 0.46 0.41 0.21 0.29 0.24 0.31 0.29 0.37 0.41 0.28 0.29 0.34 0.32 0.34 0.20 0.18 0.14 0.14 0.26

j 6 5 4 3 2

k 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

𝛼(𝑗,𝑘) 4.11 4.08 4.17 4.38 4.88 5.29 5.42 5.40 5.45 5.55 5.71 5.91 6.06 6.14 6.21 6.28 6.32 6.36 6.38 6.38

𝛽(𝑗,𝑘) 1.07 1.09 1.04 1.02 0.97 0.90 0.88 0.89 0.89 0.88 0.86 0.82 0.78 0.76 0.74 0.73 0.71 0.70 0.70 0.70

𝜎 (𝑗,𝑘)𝑎𝑚𝑝
0.38 0.32 0.38 0.47 0.44 0.37 0.33 0.30 0.23 0.18 0.15 0.15 0.16 0.17 0.17 0.18 0.19 0.19 0.19 0.19

Fig. 18 Relationships between mean amplitude spectra and relative maximum water levels for the 

analytical waveforms and the regression models 
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Fig. 19 Group delay time model by MC method 
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level of the artificial tsunami waveform is 15 m. In both cases, the mean values of the probability 

distributions are shown as red points, the standard deviations of ±1𝜎 are shown as green points, and 
the models by random number generation are shown as blue circles. Overall, these results show 

examples of random number generation. Primarily, we discover that when different random number 

combinations are used, different group delay time models and amplitude spectra models are generated, 

resulting in artificial tsunami waveforms with different shapes, even at similar target water levels. 

 

4.2.3 Examples of artificial tsunami waveforms 

Figure 21 shows the artificial tsunami waveforms generated using the group delay time and amplitude 

spectrum models in Section 4.2.2, where the solid black lines in the figure show the artificial tsunami 
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Fig. 21 Artificial tsunami waveforms using 

statistical method (𝑗𝑚𝑎𝑥 = 15) 
Fig. 22 Effect of 𝑗𝑚𝑎𝑥  on artificial tsunami 

waveforms (target level, 9 m) 
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waveforms (called a random model) generated by random numbers due to the MC method from the 

probability distributions of the group delay time and the amplitude spectrum models, respectively, and 

the solid red line in the figure shows the artificial tsunami waveform (called an average model) when 

both the group delay time and the amplitude spectrum models adopt the average value as a reference. 

Here, while four target water levels are selected: 3, 9, 15 and 30 m, five waves are shown for each target 

water level. The random model show different waveform shapes for any target water level, with the 

highest water level being around 1500 s. Investigations also reveal that the values are scattered near the 

target water level, which is a common finding. Therefore, these random models are distributed so that 

they are entangled with the average model. We also show six artificial tsunami waveforms as an example, 

in which generating several artificial tsunami waveforms with different shapes are possible by increasing 

the random numbers. Even then, variabilities around the average model are expected. Additionally, the 

method make it possible to generate artificial tsunami waveforms for any target water level by 

interpolating and extrapolating the regression equations of the amplitude spectrum model. 

Based on the above findings, we believe that the successful selection of one appropriate artificial 

tsunami waveform from the many candidates, considering the uncertainty of the initial integral value in 

the phase spectrum modeling, is largely because the time of maximum water level occurrence 𝑡𝑎 is 

fixed in advance. Therefore, we consider generating a phase spectrum model without fixing 𝑡𝑎 and 

setting the time of earthquake occurrence to zero. While the time of interest can not be specified, the 

above method can not be used, leaving the issue of uncertainty in the initial integral value. 

The example shown in Fig. 21 is also based on the case where the total amount of data after adding 

zero to the analytical waveforms is 215 (𝑗𝑚𝑎𝑥 = 15). Although the study of Sato et al.6) was designed to 

make the number of data sufficiently long, it remains debatable whether the same results as in Fig. 21 

can be obtained by changing the number of zero (the total number of data, 𝑗𝑚𝑎𝑥). Therefore, a sensitivity 

analysis is performed by varying 𝑗𝑚𝑎𝑥 from 16 to 12, then we compare the analysis results. Conversely, 

Fig. 22 shows the sensitivity analysis results when the target water level is set at 9 m. The legend in the 

figure is similar to that in Fig. 21. Here, we focus on the average model with a solid red line for 

comparison to simplify the discussion. When the 𝑗𝑚𝑎𝑥 are 16 and 15, the difference is small, decreasing 

to 14 and 13, and the maximum water level at 1500 s gradually decreases. However, when it reaches 12, 

the maximum water level at the same time is even lower, significantly changing the overall waveforms. 

Thus, we are able to confirm that the artificial tsunami waveform generated differe depending on the 

value of 𝑗𝑚𝑎𝑥 , which suggests that 𝑗𝑚𝑎𝑥  above a particular value should be used to obtain stable 

analysis results. Still, the threshold value is expected to depend on the time interval and duration of the 

original analytical tsunami waveform, which requires further research. 

The above results show that the proposed artificial tsunami waveforms satisfy all requirements listed 

in Chapter 2 for those to be used in the tsunami fragility analysis. However, the shape of the artificial 

tsunami waveforms represent by the random model, excluding the average model shown in Fig. 20, do 

not fully capture the shape of the analytical waveforms for the scenario tsunamis group shown in Fig. 

15. This limitation may be due to the loss of continuity (correlation between adjacent data) between the 

group delay time and amplitude spectrum for a group of analytical waveforms due to the assumption 

that the probability distribution for each 𝑓(𝑗,𝑘) is independent when generating random numbers for 
the group delay time model and amplitude spectrum model. Thus, this point remains to be addressed in 

the future. 

 

 

5. CONCLUSION 

 
In this paper, to contribute to advancing the tsunami PRA method for nuclear power plants, we first 

summarized the requirements for artificial tsunami waveform for an close/organic linkage between 

PTHA and tsunami fragility analysis. Next, we conducted basic studies to model the phase and amplitude 

spectra using observed waveforms from past tsunamis, then proposed a method for generating artificial 

tsunami waveforms applying statistical methods based on these requirements and the results of basic 

studies. It is noted that this paper assumed the artificial tsunami waveforms to be the input conditions 

- 55 -



 

for the tsunami run-up analysis in the tsunami fragility analysis. We summarize the artificial tsunami 

waveform requirements and their respective treatments using the proposed method as follows: 

Requirement 1 was for the artificial tsunami waveforms to be defined at the PTHA target point. In 

the proposed method, artificial tsunami waveforms were calculated at the point, and the use of the 

information regarding phase and amplitude characteristics from the analytical waveforms on PTHA was 

the key to the close/organic linkage between PTHA and tsunami fragility analysis. 

Requirement 2 was for the artificial tsunami waveforms to be defined at any tsunami water level in 

the tsunami hazard curve. In the proposed method, we estimated the maximum water level and average 

amplitude spectrum in each periodic band for analytical waveforms which were used to estimate the 

tsunami hazard curve, created a regression model with the maximum water level as an explanatory 

parameter based on these data groups and treated this requirement. By extrapolating the maximum water 

level range of the analytical waveforms with this model, it was possible to set the target water level 

beyond this range with an explanation. 

Requirement 3 was that the variabilities in phase and amplitude owing to regional characteristics 

were statistically and rationally considered on the artificial tsunami waveforms. In the tsunami fragility 

analysis, even if similar maximum water levels were reached at an offshore location, different 

waveforms resulted in different inundation conditions on land, suggesting the necessity of including 

variabilities in the phase and amplitude characteristics of the artificial tsunami waveforms. To this end, 

the proposed method considered that the analytical waveforms in PTHA have regional characteristics 

related to the tsunami occurrences, the requirement to consider the regional characteristics was 

addressed by modeling the phase and amplitude characteristics at each periodic band using the statistical 

analysis. The requirement to account for phase and amplitude characteristics variabilities was also 

addressed by combining the MC method with probability distribution assumptions based on the 

statistical analysis results. 

Requirement 4 was for the artificial tsunami waveforms to consider the effects of crustal uplift and 

subsidence associated with fault movement. Following this study’s approach, this requirement had to be 

first treated uniformly with PTHA, tsunami fragility analysis and artificial tsunami waveforms for 

close/organic linkage. Then, the proposed method addressed this requirement by modeling the phase 

and amplitude characteristics based on the analytical waveforms in PTHA and expressing them as 

relative water levels that consider the uplift and subsidence of the land area. 

Despite the enormous findings from this study, some limitations were encountered. First, from our 

artificial tsunami waveform calculations, application examples were given only for cases where the 

shallow and deep parts of the plate boundary ruptured simultaneously. Even for interplate earthquakes, 

the phase and amplitude spectra naturally differ when only the shallow or deep part of the plate boundary 

is active or when different categories of earthquakes, such as crustal earthquakes, are targeted. Therefore, 

in the future, we will confirm the applicability of the proposed method to these analytical waveforms 

and extend the scope of application. Additionally, we have considered that the artificial tsunami 

waveforms here were assumedly treated as forced water level fluctuations and boundary inputs to the 

analysis domain, making them the input conditions for tsunami propagation and run-up analysis. 

However, the tsunami propagation, which originally is a two-dimensional spread, is simplified to a one-

dimensional model. Nevertheless, this approach has not been verified, indicating another research gap 

for tsunami fragility analysis using the proposed artificial tsunami waveform method. Hence, all these 

issues should be addressed in future studies. Finally, note that the proposed method can not apply to the 

waveforms generated in shallow water or inundation areas with strong nonlinearity because the proposed 

artificial tsunami waveforms are generated at offshore locations. 
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