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ABSTRACT: To acquire new knowledge through earthquake ground motion evaluation 
from a new perspective, the authors attempted to create a site-specific earthquake ground 
motion evaluation model by machine learning using earthquake ground motion records 
obtained in the past as training data. The epicentral direction and response duration time of 
the earthquake ground motion, which had not been addressed by conventional attenuation 
relations, were also examined. Overall, the observed values were evaluated and modeled 
well, within twice to half the observed values. The average ratio of the evaluated value to 
the observed value was approximately 1, and the common logarithmic standard deviation 
was slightly greater than 0.2 for the amplitude of ground motion and slightly greater than 
0.1 for the response duration time. The impact of the epicentral direction on the response 
duration time was large, and in some cases, it was almost equal to or greater than the impact 
of each parameter in the conventional prediction equations. 
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1. INTRODUCTION

In recent years, seismic observation stations have been established across Japan to obtain large amounts 
of high-quality data in real timee.g.1), and remarkable advances in computers have made it possible to 
process these data at high speed. Such rapid changes in the data, information, and computer environment 
provide great potential for dramatic development of both the quality and the quantity of knowledge 
pertaining to earthquakes and ground motions. Additionally, through attempts to improve earthquake 
ground motion evaluation models (attenuation relations, etc.), many general and practical equations 
based on regression analyses have been developed and usede.g.2), but the data and information on which 
they are based include biases in the number of earthquakes occurring because of the source regions and 
biases in the number of records depending on observation sites, so some misrepresentation is included 
in the models. Furthermore, every time a large-scale earthquake disaster has occurred, researchers have 
noticed that the approach and results of the research contain preconceptions and assumptions attributable 
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to expert opinion. In particular, conventional earthquake ground motion prediction equations implement 
sources, propagations, and site characteristics that are seemingly physical but are often simplified or 
consolidated. Although it is possible to improve these in the future, there are limitations. There are also 
technical problems because nonlinear interrelationships left unaddressed exist between parameters, 
although they may be explained in some way by the data. The rapid increase in data and information 
that has occurred in recent years should be a great help in resolving this problem; however, because of 
the fragmentation and sophistication of specialized fields, there is a limit to the amount of time and 
effort available from specialists. To overcome this circumstance, it is necessary to entrust the work that 
can be automatically processed to computers so that people can fully devote their time and effort to 
advanced and detailed examination and the various decisions that they should embrace. 

From this point of view, for a satisfying future environment, a ground motion evaluation model 
should be automatically generated, verified, and upgraded by artificial intelligence (AI) implementing 
big data, such as observation data obtained each time an earthquake occurs. Recently, pioneering efforts 
have been made to construct earthquake ground motion prediction models using machine learning3)–10). 
This study performed a preliminary examination of constructing an earthquake ground motion 
evaluation model using machine learning to understand how new knowledge about earthquake ground 
motion might be acquired and implemented when such an environment is realized in the future. 

This study aimed to acquire new understandings from the following perspectives. First, considering 
the great benefits of making most effective use of AI and big data, as one of the specific targets, an 
earthquake ground motion evaluation model was constructed for each observation station where a large 
number of high-quality observation records and site-specific ground information were obtained. Second, 
it has been pointed out that observation records show differences in earthquake ground motion 
characteristics depending on the epicentral directione.g.11), 12). These results reflect the differences in 
earthquake occurrence frequency and source characteristics in multiple focal regions, as well as 
differences in three-dimensional seismic wave propagation characteristics. Moreover, nonlinear 
interrelationships exist among these multiple factors, making them difficult to model with conventional 
simple equations. However, it is possible that these problems may be explained by some data process if 
the new technology of machine learning were used, so characteristics depending on epicentral direction 
were also evaluated in this study. Third, the time-dependent characteristics of earthquake ground 
motions, such as the duration time, and the amplitude and periodic characteristics, response spectrum, 
etc., are important factors for understanding the phenomena and also for seismic engineering13). 
However, they have not been considered in most conventional attenuation relationships. Therefore, this 
study also evaluated the response duration time14) of earthquake ground motion. 
 
 
2. EXAMINATION METHOD AND DATA USED 
 
This study created earthquake ground motion evaluation models through machine learning15) using 
ground motion observation records obtained in the past as training data. It is possible to create a 
machine-learning model that associates the parameters describing the source and propagation 
characteristics as feature parameters and the earthquake motion indices obtained from observation 
records as target variables. 

Table 1 summarizes the method, data, and models used in this study. They are described in the 
following sections. 
 
2.1 Method of creating the earthquake ground motion evaluation model 

 
Various machine-learning methods have been proposed. After conducting preliminary studies using 
various methods to obtain highly accurate and stable evaluation results, the gradient boosting decision 
tree16) method, a method combining the gradient boosting and the decision tree methods, was used as 
the machine learning method. Figure 1 illustrates the concept of the gradient boosting decision tree. The 
gradient boosting process is a method of constructing a strong classifier (high-performance machine-
learning model) by combining multiple weak classifiers (low-performance machine-learning models). 
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Table 1  Method, data, and models 
 

 
 
 
 

 
 

Fig. 1  Schematic explanation of the gradient boosting decision tree 
  

Machine learning method  Gradient boosting decision tree
Earthquake motion data  NS and EW components at K-NET observation stations of NIED

used for analyses
Earthquake motion indices  Peak ground acceleration PGA  [cm/s2]

（Target Variables）  Pseudo velocity response spectra PS V (T ) [cm/s]
used for analyses  Velocity response duration time spectra TS V (T ) [s]

     * Period T  = 0.1, 0.5, 1, 3, 5 [s],  Damping factor h  = 0.05
     * Parameters of TS V:  p1 = 0.03,  p2 = 0.95
     * log10 PGA  and log10 PS V are used for analyses

Feature parameters  Moment magnitude M W

used for analyses  Hypocentral depth H  [km]
 Hypocentral distance X  [km]
 Epicentral direction Λ  [degree]
     * sin Λ  and cos Λ  are used for analyses

Earthquake motion model Dataset Station Earthquakes Records
Model S Dataset S SIT006 734 1468
Model T Dataset T TKY028 657 1314

All data
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…
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The decision tree is a method for creating a machine learning model that can perform classification and 
regression by conditional branching using the branch structure of a tree. The method of combining weak 
classifiers created by the decision tree by applying the gradient boosting process is called the gradient 
boosting decision tree method. In this study, eXtreme Gradient Boosting (XGBoost)17) implemented in 
DataRobot18) was selected as the machine learning tool. 

Eighty percent of the training dataset was divided into five parts. Four of these (64% of the training 
dataset) were used as teaching data for model creation, and one was used as validation data for evaluating 
the accuracy of the model. A cross-validation test was performed with five repetitions. The remaining 
20% of the dataset was used as test data to evaluate the generalizability of the model. Teaching, 
validation, and test data were selected randomly. An early stopping technique was applied to avoid 
overfitting. 
 
2.2 Observation records and indices of earthquake ground motions used in the study 

 
In this study, from the observation stations in the Kanto region of the strong motion seismograph 
network K-NET1) of the National Research Institute for Earth Science and Disaster Resilience (NIED), 
stations SIT006 (Chichibu) and TKY028 (Etchujima) were selected. SIT006 is located on shallow 
bedrock and hard surface ground, and TKY028 is located on deep bedrock and soft surface ground. The 
earthquake ground motion evaluation models at these sites, called Model S for SIT006 and Model T for 
TKY028, were studied. 

After a data search and download from the K-NET1) website, every horizontal earthquake ground 
motion recorded at the aforementioned stations from 1996 to May 31, 2019, with a combined three-
component peak ground acceleration displayed on the website of 1 cm/s2 or more was selected. The 
ground motion data of earthquakes with seismic moment MW obtained by the broadband seismograph 
network F-net19) of NIED were selected and used as training data for machine learning. 

Figure 2 shows the epicenters of the target earthquakes20) along with the locations of the observation 
stations1) used in this study. The selected horizontal ground motions had a total of 1468 time histories 
(two components of each observation record of 734 earthquakes) at SIT006 and a total of 1314 time 
histories (of 657 earthquakes) at TKY028. 

As earthquake motion indices for each component of each earthquake ground motion, which are the 
target variables of the machine learning when constructing an earthquake ground motion evaluation 
model, the peak ground acceleration PGA [cm/s2], pseudo velocity response spectra PSV [cm/s] and 
velocity response duration time spectra TSV [s] 14) (period T = 0.1, 0.5, 1, 3, 5 [s], and damping factor h 
= 0.05) were calculated and examined, respectively. The parameters that defined the beginning and end 
of the response duration time were p1 = 0.03 and p2 = 0.95 14). 
 
2.3 Feature parameters of earthquake ground motion evaluation models 

 
In this study, because an earthquake ground motion evaluation model specific to each site was created, 
the site effects among the three characteristics of source, propagation, and site were common within 
each site. Therefore, various internal studies, including trial and error assessment, were performed in 
advance to determine the feature parameters of the earthquake ground motion evaluation model. Four 
types of parameters were considered: moment magnitude, MW, hypocentral depth, H [km], hypocentral 
distance, X [km], and epicentral direction, Λ [degrees]. These parameters describe the source and 
propagation characteristics and are considered to be physically independent of each other. MW is the 
value obtained from the broadband seismograph network F-net19) of NIED. The location of the 
hypocenter necessary for determining H, X, and Λ was obtained from data from the Japan Meteorological 
Agency20), and the spread of the earthquake source fault was not considered. The observation station 
location data were obtained from the K-NET data1). Λ was set to 0° to due north and was defined 
clockwise. Because Λ becomes discontinuous at due north, the pair of sin Λ and cos Λ was input as 
feature parameters for the analyses. In this study, two components of ground motion (NS and EW 
components) were treated as data of horizontal ground motions. The difference in characteristics 
attributable to these components is beyond the scope of this study.  
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Fig. 2 The epicenters of the target earthquakes along with the locations of the observation stations used 

in this study 
 

To avoid data with different target variables even though the feature parameters were exactly the 
same, an internal study was also conducted separately by adding the difference in the two components 
of the horizontal ground motion to the feature parameters. Because there was no significant difference 
in the results of that study21), in this study, the same earthquake ground motion index was used without 
distinguishing between the two components as feature parameters. 
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When analyzing a model, it is necessary to investigate the effect of each feature parameter on the 
target variable. In this study, one feature parameter was selected from the data group used for machine 
learning. Then, only that data string was shuffled, replaced with a random data string, and the target 
variable was evaluated with the other feature parameter data strings unchanged. The degree to which 
the evaluation accuracy deteriorated at that time was defined as the feature impact. In the machine 
learning tool DataRobot18), the feature impact is displayed as “Impact,” calculated as Permutation 
Importance22). If the evaluation accuracy deteriorates significantly, the feature parameter is important. 
Conversely, if the evaluation accuracy does not change, the feature parameter does not affect the 
evaluation and is useless. In this study, none of the values were negative. 
 
2.4 Machine learning model and its input data 

 
Dataset S was the training dataset of the feature parameters and target variables required for machine 
learning to create Model S, the earthquake ground motion evaluation model for SIT006. Similarly, 
dataset T was the training dataset for creating Model T for TKY028. 

Figure 3 shows examples of statistical correlations (scatter plots) of representative feature 
parameters and target variables of datasets S and T. 
 
 
 

 
 
Fig. 3 Examples of the relationship between the obtained data for feature parameters and the target 

variables of the earthquake ground motion evaluation models 
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There are only a few records of distant, small earthquakes. Even if epicenters were near, there were 
few earthquake data of very short distances, considering their hypocentral depths. Although the 
epicenters were in all directions, many were distributed in the northeast direction (approximately 45°), 
where many aftershocks of the 2011 off the Pacific Coast of Tohoku earthquake20) occurred. In addition, 
at least in these examples, the long-period pSv and TSv are statistically dependent on the magnitude in 
contrast to the PGA and short-period pSv. In particular, in TKY028, which has deeper bedrock and is 
covered with softer sedimentary layers than SIT006, pSv and TSv in the long-period range become 
relatively larger with increasing MW, and their scatter also becomes larger. This is thought to reflect the 
fact that when the scale of the earthquake is larger, the rupture area of the source fault is larger, the 
energy generated from the hypocenter is greater, the rupture time is longer, and the propagation paths of 
seismic waves, including surface waves, are more complex. 

Figure 4 shows examples of histograms of the target variables of datasets S and T. Because there are 
few large data of PGA and pSv, these are transformed into common logarithmic data (log10 PGA and log10 

pSv) to provide target variable data with distributions suitable for machine learning and to increase the 
precision of the earthquake ground motion evaluation model. For the loss functions used in the analyses, 
the least squares method (normal distribution) was applied to PGA and pSv, and the Poisson distribution 
was applied to TSv. 
 
 

 
 

Fig. 4  Examples of histograms of the target variables 
 
 
3. RESULTS 
 
Models S and T were created by machine learning using datasets S and T, respectively. 
 
3.1 Feature impacts on the earthquake ground motion indices (target variables) 

 
The feature impacts on the earthquake motion indices (the target variables; PGA, pSv, TSv) of Model S 
are shown in the left of Fig. 5. MW and X have comparable impacts on PGA and short-period pSv (the 
impact of X is slightly higher), but MW has the greatest impact on other variables. The feature impacts 
of H are small. The feature impacts of Λ are greater in short periods than in long periods. The feature 
impact of Λ, which can be considered as the sum of the impacts of sin Λ and cos Λ in the figure, 
outweighs the impact of H, is larger for TSv than for pSv, and outweighs the impact of X for periods 
shorter than 1 s. 

The feature impacts on the earthquake motion indices of Model T are shown on the right side of Fig. 
5. In short periods, the impacts of X are dominant; in other cases, the impacts of MW are dominant. 
Generally, the feature impacts of MW increase with period and those of X decrease with period. In 
comparison, the impact of H is not large, but its impact on TSv in the long-period range is equal to or 
greater than that of X. The feature impacts of Λ are greater for TSv than for PGA and pSv, exceed the 
impacts of X for periods other than 0.1 s, and even exceed the impacts of MW in the short-period range. 
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Fig. 5 Feature impacts on the earthquake motion indices (the target variables) of the earthquake ground 

motion evaluation models (the horizontal axis is normalized so that the total amount is 100%) 
 
 

In addition, the impact of MW on the short-period TSv of Model T at Etchujima (TKY028), where 
the bedrock is deep, is smaller than that of Model S at Chichibu (SIT006), where the bedrock is shallow. 
To consider this point more generally, it will be necessary to perform a more detailed examination by 
selecting more records of earthquakes at more stations. 
 
3.2 Comparison of observed and evaluated values for each earthquake ground motion index 

 
The relationship between the observed and evaluated values for each earthquake ground motion index 
(target variable; PGA, pSv, TSv) is shown in Fig. 6, with observed values on the horizontal axis and 
evaluated values on the vertical axis. As mentioned above, for PGA and pSv, the respective common 
logarithms (log10 PGA and log10 pSv) are given as the target variable data for analysis. There is no 
significant difference between the distribution of teaching and validation data (indicated by black marks) 
and the distribution of test data (indicated by red marks). The observed values are well evaluated and 
modeled for all teaching, validation, and test data, and most of the evaluation values are in the range of 
twice to half the observed values. Looking at the results in detail, there is slight underestimation for 
large amplitudes, slight overestimation for small amplitudes, and slight overestimation for short duration 
times, with a slightly large variation. 

Furthermore, examples of histograms of the ratios of the evaluated earthquake motion indices to the 
observed indices are shown in Fig. 7, and their averages and variations are listed in Table 2. The ratios 
of the evaluated earthquake motion indices to the observed indices have a relatively uniform distribution 
centered at approximately 1, and the variations in response duration time are smaller than those in 
amplitude (maximum values and response spectra). Overall, the observed values are evaluated and 
modeled well, and most of the evaluated values are within twice (2 on the horizontal axis) to half (0.5 
on the horizontal axis) the observed values. As shown in Table 2, the averages of the ratios of the 
evaluated earthquake motion indices to the observed indices are almost 1; therefore, the averages of the 
common logarithms of the ratios are approximately 0. The averages of the common logarithms of the 
ratios of the evaluated earthquake motion indices to the observed indices are slightly greater than 0.2 in 
the amplitude, equal to or less than the values obtained in previous studiese.g.2). This study is the first 
analysis example of response duration time. There is no previous statistical analysis case as there is for 
amplitude. Additionally, it should be noted that the physical meaning is different from the amplitude. 
However, in the results of this study, the observed values are evaluated and modeled better than those 
of amplitude, and the common logarithms of the ratios of the evaluated values to the observed values 
are slightly more than 0.1. At the shortest period (0.1 s), the variation is somewhat large. 
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Fig. 6 Examples of relationship between the observed target variable values ( log10 PGA, log10 PSV, 

TSV ) and the evaluated target variable values ( period T [s], damping factor 0.05 ) 
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Fig. 7 Examples of histograms of the ratios of the evaluated earthquake motion indices ( PGA, PSV, 

TSV ) to the observed indices ( period T [s], damping factor 0.05 ) 
 
 
Table 2  Ratios of the evaluated earthquake motion indices ( PGA, PSV, TSV ) to the observed indices 

 

 
 
  

Earthquake motion index PGA PS V TS V

Period [s] － 0.1 0.5 1 3 5 0.1 0.5 1 3 5

Average of ratios of the evaluated to the observed

    Model S  ( SIT006 ) 1.08 1.10 1.14 1.11 1.09 1.09 1.16 1.06 1.07 1.09 1.10

    Model T  ( TKY028 ) 1.15 1.15 1.16 1.14 1.13 1.13 1.09 1.07 1.06 1.09 1.09

Common logarithmic average of ratios of the evaluated to the observed

    Model S  ( SIT006 ) 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.01 0.01 0.02

    Model T  ( TKY028 ) 0.01 0.02 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.02 0.01

Common logarithmic standard deviation of ratios of the evaluated to the observed

    Model S  ( SIT006 ) 0.19 0.22 0.25 0.22 0.21 0.21 0.19 0.12 0.13 0.15 0.16

    Model T  ( TKY028 ) 0.20 0.20 0.23 0.21 0.20 0.20 0.15 0.11 0.11 0.14 0.14
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3.3 Epicentral direction dependency of the evaluated value of each earthquake motion index 
 

The epicentral direction dependency of each evaluated earthquake motion index (PGA, pSv, TSv) was 
investigated. 

Figure 8 shows examples (pSv, TSv) of the epicentral direction dependency of the evaluated 
earthquake motion indices, which are normalized by the maximum values calculated in 72 directions in 
five-degree increments. Model S results with MW = 5, H = 10 km, and X = 120 km are shown on the left, 
and model T results with MW = 6, H = 10 km, and X = 180 km are shown on the right. The calculation 
conditions shown here were selected as study examples based on the distribution of multiple shallow 
crustal earthquakes (mainly shown in blue) in multiple directions (north-northwest, south-southwest, 
and northeast, etc.) (Fig. 2).  

 
 

 
 
Fig. 8 Examples ( PSV, TSV ) of the epicentral direction dependency of the evaluated earthquake motion 

indices normalized by the maximum values calculated in 72 directions in 5-degree increments 
( period T [s], damping factor 0.05 ) 

 
 
 

Figure 9 shows examples (MW = 6, H = 10 km, X = 180 km) of the epicentral direction dependency 
of the evaluation values (raw values) of the pseudo-velocity response spectra PSV and the velocity 
response duration time spectra TSV. The pSv results are shown in the upper row, and the TSv results are 
shown in the lower row. These examples show the epicentral direction dependency of earthquake ground 
motion, and the characteristics differ depending on the site and period, as well as between pSv and TSv. 
For example, in the case of events in the north-northwest direction, especially in the long-period range, 
both pSv and TSv show large values. In the deep underground structure in the Kanto region and its 
surroundings23), a deep channel-like bedrock structure continues from the direction of Niigata Prefecture 
to central Tokyo. The aforementioned epicentral direction dependency may reflect the excitation and 
propagation of surface waves due to such deep subsurface structures. In addition, as shown in Fig. 9, 
the absolute values of both pSv and TSv are larger for Model T than for Model S in most cases. Because 
the basement is deep in central Tokyo and covered with soft sedimentary layers in mainly the Tokyo 
Bay area, it seems that the seismic site characteristics of TKY028 are greater than those of SIT006. 

Next, Fig. 10 shows study examples (Model T, MW = 6, H = 10 km, X = 180 km) on how to provide 
epicentral directions in machine learning. Examples of the examination of the contribution to Model T 
of sin Λ and cos Λ, which are provided as feature parameters of the epicentral direction in machine 
learning, are shown at the top of Fig. 10. The results using only sin Λ are north–south symmetric (EW 
axis symmetric), and the results using only cos Λ are east–west symmetric (NS axis symmetric). 
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Fig. 9 Examples ( PSV, TSV ) of the epicentral direction dependency of the evaluated earthquake motion 

indices calculated in 72 directions in 5-degree increments ( period T [s], damping factor 0.05, 
MW = 6, H = 10 km, X = 180 km ) 

 
 

 
 
Fig. 10 Studies on modeling methods of epicentral directions for machine learning ( Model T, period 

T [s], damping factor 0.05, MW = 6, H = 10 km, X = 180 km ) 
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Examples of studies on the effect of the epicentral direction of zero degrees (Λ = 0°) on Model T are 
illustrated at the bottom of Fig. 10. The zero-degree epicentral direction is due north for ΛS, which is the 
same as Λ, and due south for ΛN. The calculation result of the model becomes discontinuous in the zero-
degree epicentral direction (Λ = 0°). Results with a period of 3 s are more variable than those with a 
period of 1 s. Among the results of TSV with a period of 3 s, the absolute values obtained by the model 
using ΛS are larger than those of the others, approximately twice as large in many directions. However, 
in the north-northwest, south-southwest, and northeast directions where the training data exist, the 
results of these models are almost the same. In the directions and regions where there are insufficient 
training data, the reliability of the model may be low due to insufficient training. 
 
3.4 Investigation of method to provide epicentral directions as feature parameters and the effects 

 
There are several ways to learn epicentral directions. Herein, Case C10 is the basic Model T described 
thus far, that is, the case in which the epicentral direction Λ is determined clockwise with due north at 
0°, and the pair of sin Λ and cos Λ is applied to actual machine learning. In addition, cases in which the 
epicentral directions are provided in other various ways (see the upper part of Fig. 12, which will be 
described later) were also set. This section examines these cases, how to provide the epicentral direction, 
and its effects. 

First, as described in the previous section, cases in which only sin Λ and cos Λ are given as feature 
parameters for the epicentral directions were set. These are referred to as Case C11 and Case C12, 
respectively. In addition, Case C01, which uses ΛS (same as Λ above) as feature data and defines due 
north as the 0° epicentral direction, and Case C02, which uses ΛN as feature data and defines due south 
as the 0° epicentral direction, were also set. Case C01 for the northern earthquakes and Case C02 for the 
southern earthquakes may have poor evaluation accuracy because the values of the epicentral directions 
are discontinuous near the epicentral direction of 0°. 

As shown in Fig. 2, the epicentral distribution of earthquakes is not uniform, so the reliability of the 
evaluation results may vary greatly depending on the amount of training data around the evaluation 
target. Therefore, as the feature parameters of the epicentral directions, instead of a continuous quantity 
corresponding to the epicentral direction of each earthquake, four cases (C21 to C24) provided with the 
corresponding categories among the 12 preset directions (herein called the “category of epicentral 
direction”), were also established. In C24, four sets of numbers corresponding to the numbers of 
occurrences of the four directions, N, S, E, and W, in the string of C22 are provided. Case C33, in which 
the 12 categories of epicentral directions of C23 was increased to 20 categories, was also established. 

Figure 11 shows the feature impacts (period 3 s, damping factor 0.05) in each case of Model T with 
different methods of providing the feature parameters of the epicentral directions. The trend is common 
for each case; however, in the five cases (C21 to C24, C33) with categories of epicentral directions, the 
feature impacts on the epicentral directions are relatively small. Therefore, training individual epicentral 
direction data rather than categories of epicentral directions may reflect epicentral direction 
characteristics in the evaluation results more effectively. However, it should be noted that whether it is 
appropriate depends on how the feature impact is evaluated and how the model is utilized. 

Figure 12 shows examples of the epicentral direction dependency of the pseudo-velocity response 
spectra PSV and the velocity response duration time spectra TSV evaluated using a machine learning 
model under the conditions of MW = 6, H = 10 km, and X = 180 km. For the five cases in which the 
feature parameters of the epicentral directions are given as a continuous quantity, values obtained at 5° 
steps were plotted; for the five cases where the categories of epicentral directions are given, the values 
obtained were plotted at the center of the corresponding categories. Because of the trigonometric 
functions used, the result for C11 has north–south symmetry, and the result for C12 has east–west 
symmetry. Although C01 is discontinuous due north and C02 is discontinuous due south according to 
the epicentral direction definition, the results aside from these points are relatively close to that of C10. 
However, the TSV of C01 is excessive in almost all directions. The reason for this is currently unknown. 
The results of C21–C24, with 12 categories of epicentral direction, are insensitive to changes in 
epicentral direction, and the result of C33, with 20 categories, is similar. There is less variation in the 
evaluation results in the northeast direction than in the other directions for each case. This may reflect 
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Fig. 11 Feature impacts in each case of the earthquake ground motion evaluation model T with different 

methods of providing the epicentral directions ( period T = 3 s, damping factor 0.05, the 
horizontal axis is normalized so that the total amount is 100% ) 

 
the fact that there was an overwhelming amount of earthquake data in the northeast direction, as 
mentioned above. The observed earthquakes close to the evaluation conditions are mostly in the north-
northwest and northeast directions, but there are some in the south-southwest direction. These epicentral 
direction characteristics are the characteristics observed in the evaluation results of C10. Conversely, 
there is a possibility that the reliability of the evaluation results is low in directions with few earthquakes 
that are close to the evaluation conditions. 
 
 
4. DISCUSSION 
 
In this study, considering the epicentral direction and the response duration time of the earthquake 
ground motion, which have not been addressed by conventional attenuation relations, an earthquake 
ground motion evaluation model specific to an observation site was created. Overall, the motion was 
evaluated and modeled well. 

Among the target variables (earthquake ground motion indices) used in this study, the peak ground 
acceleration PGA is the maximum value of the earthquake ground motion, and the pseudo-velocity 
response spectrum PSV is the maximum value of the response waveform reflecting strongly narrowband 
characteristics. Both are amplitude indices and are determined only by the maximum value that occurs 
at a certain moment in the time history. By contrast, the velocity response duration time spectrum TSV 
is an index determined from the amplitude-squared cumulative curve of the entire response time 
history14). Such differences in character caused differences in the variability of each ratio of the 
evaluation value to the observed value, and TSV seemed to be evaluated with less variability than PGA 
or PSV. TSV seems to be an index that stably captures the temporal characteristics of the time history. 

It is important to consider the differences in the earthquake ground motion characteristics depending 
on the epicentral direction. In particular, the influence of the epicentral direction Λ on TSV is large, and 
in many cases, it is almost equal to or greater than the influence of the moment magnitude MW, 
hypocentral depth H, and hypocentral distance X, which are considered in conventional prediction 
equations. These results reveal the possibility of evaluating the epicentral direction dependency of the 
amplitude and duration time of the earthquake ground motion according to the observation site and 
period. They are also useful for qualitative and quantitative analyses of various earthquake ground 
motion characteristics according to the location and period. Such a model can reflect the difference in 
the three-dimensional propagation characteristics of seismic waves relatively easily. In the past, these 
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Fig. 12 Examples of the epicentral direction dependency of the pseudo-velocity response spectra PSV 

and the velocity response duration time spectra TSV evaluated using a machine learning model 
( Model T, period T = 3 s, damping factor 0.05, MW = 6, H = 10 km, X = 180 km ) 

 
 
could not be expressed adequately without a sophisticated and detailed method. Hereafter, it is necessary 
to proceed with the examination of the interpretation of the model and its evaluation results using 
individual observation records and surrounding subsurface structure information. 

In addition, depending on how the epicentral direction Λ is learned, there is a risk that the evaluation 
results may be distorted or that the evaluation accuracy may be degraded. If sufficient data exist, it is 
better to make use of the raw data than to set categories of epicentral directions and organize them. 
Considering that the influence of the epicentral direction value discontinuity on the analysis should be 
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avoided, case C10 in this study, which applies the pair of sin Λ and cos Λ, is considered an appropriate 
method. 

Looking at the results of this study in detail, it showed slight underestimation for large amplitudes, 
slight overestimation for small amplitudes, and slight overestimation with a slightly large variation for 
short duration times. In particular, it is necessary to devise methods to improve the imbalance in model 
accuracy caused by sparseness and fineness of the data. It is also necessary to consider extrapolation to 
areas of large earthquakes, large-amplitude ground motions, and long duration ground motions, for 
which data are overwhelmingly scarce. For this purpose, the weighting of data or utilization of 
earthquake ground motion evaluation results by existing methods, including ground motion prediction 
equations and fault models, can be considered. It is also necessary to consider how well the model can 
explain the observation records and existing knowledge, including the variations. 

The number of earthquake ground motion observation records used for modeling at individual sites 
remains insufficient. If there are few observed earthquakes close to the evaluation conditions, the 
reliability of the earthquake ground motion evaluation results may be low. In this study, although the 
observed ground motion values appear to have been evaluated well as a whole, the overall evaluation 
could attain even higher quality if the latest data accumulated at each point could be utilized most 
effectively. As only two sites were examined in this study, it is necessary to increase the number of sites 
and examine and analyze these in the future. It is also necessary to examine sites other than sites in the 
Kanto region. In addition, although the topic was not considered here, the characteristics of the two 
horizontal components of the earthquake ground motion are not only different for each earthquake but 
also change with a lot of groups of seismic waves arriving, even within the time history of a single 
earthquake. Therefore, if this is to be discussed, it is necessary to analyze not only the earthquake ground 
motion index for the entire time history but also perform individual and detailed analyses. The vertical 
ground motions must also be considered. 

In addition, it is important to examine and select data and to consider data from which adverse 
effects, such as long-period noise, have been carefully removed. In particular, when considering the 
effect on response duration time, it is important to examine and select the base data carefully25). In the 
future, it will be essential to develop and systematize primary processing methods such as automatic 
selection methods and automatic filter processing for base data to create earthquake ground motion 
evaluation models. 
 
 
5. CONCLUSIONS 
 
In this study, to acquire new knowledge by earthquake ground motion evaluation from a new perspective, 
the authors newly created an earthquake ground motion evaluation model unique to each seismic 
observation site by machine learning using earthquake ground motion records obtained in the past as 
training data. Specifically, two sites in the Tokyo metropolitan area were examined. The epicentral 
directions and response duration times of earthquake ground motions, which have not been addressed 
in conventional attenuation relations, were also considered. Overall, the observed values were evaluated 
and modeled well, and the ratio of the evaluated values to the observed values showed a well-defined 
distribution centered on 1, with most of the evaluated values falling within the range of twice to half of 
the observed values. Expressing the scatter of the ratio of the evaluation value to the observed value by 
the common logarithmic standard deviation, in the case of the amplitude of the earthquake ground 
motion, the value was slightly exceeded 0.2, which is less than or equal to the existing result. On the 
other hand, in the case of the response duration time, which was newly considered here because there 
was no previous statistical analysis case, the value was even smaller, a little more than 0.1, and could be 
evaluated more accurately than the amplitude. The impact of the epicentral direction on the response 
duration time was large, in many cases equal to or greater than the effect of each parameter treated in 
the conventional ground motion prediction equations. However, it should be noted that the reliability of 
the evaluation results may be low when there are few earthquakes close to the evaluation conditions. 

In the future, it will be necessary to make maximum use of big data nationwide and conduct studies 
using artificial intelligence (AI). If AI and big data can be used for earthquake ground motion evaluation, 
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it provides the great advantage that a large amount of data and high-quality information can be obtained, 
and an earthquake ground motion model specific to each location can be constructed by making the most 
of these data. If so, there is a high possibility of dramatically advancing analysis and discussion of 
differences due to hypocentral regions and observation areas or locations. It is expected that it will be 
possible to realize and improve the explainability of the AI examination process and examination results, 
which is currently difficult, by considering existing earthquake ground motion evaluation equations, 
evaluation results, and their physical conditions. 
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