
EIGENVALUE PROBLEM OF MDOF  

NON-PROPORTIONAL COMPLEX DAMPING 

SYSTEM AND TRANSFER FUNCTION BY MODE 

SUPERPOSITION 

Yuzuru YASUI1, Toshiro MAEDA2 and Michio IGUCHI3 

1 Member, Dr. Eng., Adjunct Researcher, Research Institute for Science and Engineering, 

Waseda University, 

 Tokyo, Japan, yasui@mx5.mesh.ne.jp 
2 Member, Dr. Eng., Professor, Department of Architecture, School of Creative Science and 

Engineering, Waseda University, 

Tokyo, Japan, tmaeda@waseda.jp 
3 Member, Dr. Eng., Emeritus Professor, Tokyo University of Science, 

Tokyo, Japan, iguchi@rs.noda.tus.ac.jp 

ABSTRACT: First, we present a method for obtaining the eigenvalues and eigenvectors 

of a multi-degree-of-freedom system with nonproportional complex damping. These 

eigenvalues and eigenvectors are complex and appear in conjugate pairs, corresponding to 

the number of masses, with forward waves and their conjugate backward waves. By 

leveraging the orthogonality of the eigenvectors, we show that the seismic transfer function 

for each mass can be expressed as a superposition of the transfer functions of the complex 

modes of the forward wave, exhibiting conjugate symmetry. Similarly, using the 

orthogonality of the real eigenvectors, we derive an approximate transfer function by 

superimposing the transfer functions of the real modes. Finally, numerical calculations 

using a simple model are performed to validate the proposed complex eigenvalue analysis 

method and the transfer function based on complex modes. Additionally, we discuss the 

reliability of the transfer function derived from real modes. 
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1. INTRODUCTION

It has been suggested that the damping of structures may be complex damping (also referred to as 

hysteresis damping or structural damping), which remains constant1), 2) with respect to frequency, rather 

than viscous damping, which is proportional to frequency. The concept of complex damping was 

originally introduced in the harmonic vibration analysis of aircraft flutter3) and has since been 

incorporated into the equations of motion of structures4). Its application has raised several issues, mainly 

in the context of single-degree-of-freedom (SDOF) systems, as summarized below: 
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(1) Differences from the viscous damping case in parameters such as the damped natural 

frequency4). 

(2) The inconsistency between equations of motion in the frequency domain and those in the time 

domain5), 6). 

(3) The necessity of introducing the sign function to ensure that the response remains a real value6). 

(4) The issue that the impulse response, obtained via the inverse Fourier transform of the transfer 

function, becomes non-causal6), and the challenges associated with evaluating the integral of the 

inverse Fourier transform7), 8). 

(5) The proposal of an equivalent viscous damping model6). 
 

Among these issues, if we accept that the response is non-causal, the remaining major concern is the 

second issue, i.e., the inconsistency between equations of motion in different domains, for which a 

solution has been sought. 

Inaudi and Kelly9) proposed a time-domain representation of the equation of motion, incorporating 

the damping force as the product of the imaginary part of the complex stiffness and the Hilbert transform 

of the displacement response. The Fourier transform of this equation of motion is consistent with the 

well-known frequency-domain equation, thereby resolving the above inconsistency. Building upon this 

approach, the authors10) demonstrated that the complex eigenvalues of the forward and backward waves 

for an SDOF system can be obtained. In doing so, they noted that the displacement response in free 

vibration consists of a single frequency component and that the Hilbert transform of a free wave is 

equivalent to advancing the phase by π/211), 12). 

In recent years, the number of buildings employing base-isolation and vibration control systems has 

been increasing. To evaluate the seismic damping effectiveness of such structures, it would be beneficial 

to develop a method for complex eigenvalue analysis of multi-degree-of-freedom (MDOF) systems with 

nonproportional complex damping, where damping values vary across different parts of the system. 

Additionally, a modal analysis method utilizing these results would be useful. Although pioneering 

studies13), 14) have explored this approach, their theoretical formulations remain incomplete. Therefore, 

there is a need to establish a theoretically consistent method for complex eigenvalue analysis of MDOF 

systems with nonproportional complex damping. 

In this paper, we first present a method for obtaining the complex eigenvalues and complex 

eigenvectors of the forward and backward waves in an MDOF system by solving the eigenvalue problem 

for the time-domain equation of motion, including the damping force proposed by Inaudi and Kelly. 

When applying Hilbert transform, we note that, as in the SDOF case, free vibration consists of a single 

frequency component. Utilizing the orthogonality of the complex eigenvectors, we show that the transfer 

function of each mass can be obtained by superimposing the transfer functions of the complex modes. 

Since these transfer functions exhibit conjugate symmetry, only the complex eigenvalues and 

eigenvectors of the forward waves (equal in number to the masses) are required for calculations. This 

makes the method significantly more efficient than the nonproportional viscous damping approach15), 

which requires twice as many eigenvalues and mode shapes as the number of masses. Next, as an 

approximate method, we show that the transfer function of each mass can be obtained by superimposing 

the transfer functions of real modes, derived from real eigenvalue analysis. Seismic response 

calculations are performed using a modal analysis approach, which involves superimposing the 

responses obtained via the inverse Fourier transform16) of the product of the Fourier transform of the 

input acceleration and the transfer function of each mode. The following sections describe the complex 

eigenvalue analysis method and the derivation of transfer functions, followed by numerical simulations 

using a vibration control structure17) as an example to validate the complex modal approach and assess 

the applicability of the real modal approach. It should be noted that the response prediction method 

proposed in this study is based on the assumption of linear response. 

 

 

2. EQUATION OF MOTION AND TRANSFER FUNCTION 

 

Consider the case where the ground acceleration 𝑥̈𝑔 is applied to the base of the shear-type 𝑛-mass 
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model shown in Fig. 1. Let 𝑚𝑖 be the 𝑖-th mass of this system and let 𝑘𝑖 and 𝑘𝑖
′ be the real and 

imaginary parts of the complex stiffness of the 𝑖-th story, respectively. Also, let 𝑥𝑖 be the displacement 

of the 𝑖-th mass relative to the base. The time-domain equation of motion, following Inaudi and Kelly9), 

is given by 

 
[𝑀]{𝑥̈} + [𝐾]{𝑥} + [𝐾′]{𝑥̂} = −[𝑀]{1}𝑥̈𝑔 (1) 

 

where [𝑀] : mass matrix, [𝐾] : matrix consisting of the real part of complex stiffness, [𝐾′] : matrix 

consisting of the imaginary part of the complex stiffness and, {𝑥} : displacement vector with 𝑥𝑖 as its 
elements, {1} : n-dimensional vector with all elements equal to 1, 𝑥𝑔: ground displacement, 𝐴 ̈ : second-

order derivative of 𝐴  with respect to time 𝑡 . Additionally, {𝑥}  is a vector whose elements are the 

Hilbert transform 𝑥𝑖 of 𝑥𝑖, given by 

 

𝑥𝑖(𝑡) = ∫
−𝑥𝑖(𝜏)

𝜋(𝑡 − 𝜏)

∞

−∞

 𝑑𝜏 (2) 

 

When [𝐾′]  is proportional to [𝐾] , the system exhibits proportional damping  otherwise, it is 

classified as nonproportional damping. The damping ratio ℎ𝑖 for the 𝑖th story is defined as 

 

ℎ𝑖 =
1

2

𝑘𝑖
′

𝑘𝑖

(3) 

 

In the case of proportional damping, ℎ𝑖 takes the same value for each layer. 

 

 
Applying the Fourier transform to Eq. (1) yields 

 

−𝜔2[𝑀]{𝑋(𝑗𝜔)} + ([𝐾] + 𝑗[𝐾′] sgn( 𝜔)){𝑋(𝑗𝜔)} = −[𝑀]{1}𝑋𝑔(𝑗𝜔) (4) 

 

where, {𝑋(𝑗𝜔)} : a vector whose elements are 𝑋𝑖(𝑗𝜔), the Fourier transform of 𝑥𝑖(𝑡), 𝑋𝑔(𝑗𝜔) : the 

Fourier transform of 𝑥̈𝑔(𝑡), 𝑗 : imaginary unit, 𝜔 : circular frequency, and 𝐴(𝑗𝜔) : a complex function 

of 𝜔. 

In deriving Eq. (4), the Fourier transform of 𝑥𝑖(𝑡) is given by  

 

FT[𝑥̂𝑖(𝑡)] = 𝑗 sgn(𝜔) 𝑋𝑖(𝑗𝜔) (5) 

 

where sgn(𝜔) is the sign function, defined as 

 
Fig. 1 Lumped mass model 
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sgn( 𝜔) = 1 (𝜔 > 0),   0 (𝜔 = 0),   − 1(𝜔 < 0) (6) 

 

From Eqs. (1) and (4), it is confirmed that the equations of motion in the time and frequency domains 

are consistent, thereby resolving the inconsistency issue previously reported5), 6). Eq. (6) also indicates 

that Eq. (4) must be treated separately for the cases of forward waves (𝜔 > 0), stationary state (𝜔 = 0), 

and backward waves (𝜔 < 0). Furthermore, Eq. (5) shows that the Hilbert transform shifts the phase of 

all frequency components by π/211), 12). Therefore, when the frequency is known, Eq. (5) provides a more 

convenient representation than Eq. (2). 

From Eq. (4), solving for {𝑋(𝑗𝜔)} and taking its ratio to 𝑋𝑔(𝑗𝜔), we obtain the transfer function 

{𝐺𝑑
𝑜(𝑗𝜔)} for the relative displacement: 

 

{𝐺𝑑
𝑜(𝑗𝜔)} = −(−𝜔2[𝑀] + [𝐾] + 𝑗[𝐾′] sgn(𝜔))−1[𝑀]{1} (7) 

 

where {𝐺𝑑
𝑜(𝑗𝜔)} is a column vector whose elements are the transfer functions 𝐺𝑑,𝑖

𝑜 (𝑗𝜔) for each mass. 

From Eq. (7), it follows that {𝐺𝑑
𝑜(−𝑗𝜔)}  is equal to conjugate of {𝐺𝑑

𝑜(𝑗𝜔)} , confirming that the 

relation is conjugate symmetric. 

The transfer functions for relative velocity {𝐺𝑣
𝑜(𝑗𝜔)} and absolute acceleration {𝐺𝑎

𝑜(𝑗𝜔)} can be 

obtained using {𝐺𝑑
𝑜(𝑗𝜔)} as follows: 

 

{𝐺𝑣
𝑜(𝑗𝜔)} = 𝑗𝜔{𝐺𝑑

𝑜(𝑗𝜔)},     {𝐺𝑎
𝑜(𝑗𝜔)} = 1 − 𝜔2{𝐺𝑑

𝑜(𝑗𝜔)} (8𝑎, 𝑏) 

 

For brevity, the remainder of this paper will focus on the transfer function for relative displacement. 

The seismic response is obtained by applying the inverse Fourier transform16) to the product of the 

transfer function (Eq. (7) or Eq. (8)) and the Fourier transform of the input motion. To predict or interpret 

the results, it is useful to analyze the natural frequencies, damping constants, and stimulus functions of 

each mode. 

 

 

3. EIGENVALUE ANALYSIS 

 

3.1 Eigenvalue problem 

 

Setting the right-hand side of Eq. (1) to zero yields the homogeneous equation: 

 
[𝑀]{𝑥̈} + [𝐾]{𝑥} + [𝐾′]{𝑥} = 0 (9) 

 

Now, let the solution of Eq. (9) be expressed as 

 

{𝑥} = {𝑢∗}𝑒𝑗𝜔∗𝑡 (10) 

 

In Eq. (10), {𝑢∗} is a complex column vector, and 𝜔∗ is the complex circular frequency. The notation 

𝐴∗ indicates that 𝐴 is a complex quantity. 

Substituting Eq. (10) into Eq. (9) and dividing both sides by 𝑒𝑗𝜔∗𝑡 yields 

 

(−𝜔∗2[𝑀] + [𝐾] + 𝑗[𝐾′] sgn( Re 𝜔∗)){𝑢∗} = {0} (11) 

 

Here, in the derivation of Eq. (11), the Hilbert transform of 𝑒𝑗𝜔∗𝑡, denoted as 𝐻[𝑒𝑗𝜔∗𝑡], is assumed to 

be 

𝐻[𝑒𝑗𝜔∗𝑡] = 𝑗𝑒𝑗𝜔∗𝑡 sgn( Re 𝜔∗) (12) 
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Equation (12) is derived by shifting the phase of 𝑒𝑗Re 𝜔∗𝑡 by π⁄211), 12), without using Eq. (2), since the 

free vibration solution consists of a single circular frequency component, Re 𝜔∗. Note that 𝑒−Im 𝜔∗𝑡 is 

not affected by the Hilbert transform because it has no phase information. 

Equation (11) represents an eigenvalue problem for determining the eigenvalues 𝜔∗2
  and 

eigenvectors {𝑢∗}. However, it is necessary to separately consider the cases of forward waves Re 𝜔∗ >
0 and backward waves Re 𝜔∗ < 0. 

 

3.2 Eigenvalues and orthogonality for forward waves 

 

First, consider the case where Re 𝜔∗ > 0. In this case, Eq. (11) simplifies to 

 

(−𝜔∗2[𝑀] + [𝐾] + 𝑗[𝐾′]){𝑢∗} = {0} (13) 

 

Solving Eq. (13) yields 𝑛  eigenvalues 𝜔𝑠
 ∗2(𝑠 = 1~𝑛)  and corresponding eigenvectors { 𝑢𝑠

 ∗}(𝑠 =
1~𝑛). A brief examination shows that these eigenvectors satisfy the orthogonality conditions: 

 

{ 𝑢∗
𝑟
  }𝑇[𝑀]{ 𝑢𝑠

  ∗} = {0}   (𝑟 ≠ 𝑠),     { 𝑢𝑟
  ∗}𝑇([𝐾] + 𝑗[𝐾′]){ 𝑢𝑠

  ∗} = {0}   (𝑟 ≠ 𝑠) (14𝑎, 𝑏) 

 

Using Eq. (14a), any vector {𝑤} can be expanded as a linear combination of the 𝑛 eigenvectors: 

 

{𝑤} = ∑ 𝛼∗
𝑠
 { 𝑢∗

𝑠
 },      𝛼∗

𝑠
 =

{ 𝑢∗
𝑠
 }𝑇[𝑀]{𝑤}

{ 𝑢∗
𝑠
 }𝑇[𝑀]{ 𝑢∗

𝑠
 }

𝑛

𝑠=1

(15𝑎, 𝑏) 

 

 

3.3 Complex eigenvalues and damping 

 

The eigenvalues of the 𝑠-th mode, 𝜔𝑠
 ∗2

, can be expressed as 

 

𝜔𝑠
 ∗2 = 𝜔2

𝑠
 (1 + 𝑗2 ℎ𝑠

 ),     𝜔2
𝑠
 = Re 𝜔 𝑠

 ∗2,     ℎ𝑠
 =

1

2

Im 𝜔𝑠
 ∗2

Re 𝜔𝑠
 ∗2 (16𝑎, 𝑏, 𝑐) 

 

here, 𝜔𝑠
  and ℎ𝑠

  represent the undamped natural circular frequency and complex damping constant 

for the 𝑠 -th mode, respectively. Of the two solutions obtained from Eq. (16a), the one satisfying       

Re 𝜔∗ > 0 corresponds to the desired natural frequency 𝜔1
∗

𝑠
 , given by10) 

 

𝜔1
∗

𝑠
 = √1 + ℎ𝑒𝑠

 2 𝜔𝑠
 + 𝑗 ℎ𝑒 𝜔𝑠

 
𝑠
 ,    ℎ𝑒 = √√1 + 4 ℎ𝑠

 2 − 1

2𝑠
       (17𝑎, 𝑏) 

 

The parameter ℎ𝑒𝑠
  in Eq. (17b) represents the damping effect and is approximately equal to ℎ𝑠

  

(e.g., when ℎ 𝑠
 = 0.2, then ℎ𝑒𝑠

  ≈ 0.196). The real part of Eq. (17a) corresponds to the damped natural 

frequency, which increases with damping, while the imaginary part represents the exponential decay. 

These quantities are fully determined once 𝜔𝑠
  and ℎ 𝑠

  are known. The derivation of Eq. (17) from Eq. 

(16a) is detailed in Appendix-1. 

 

3.4 Backward waves and conjugate eigenvalues 

 

Since the eigenvalues 𝜔𝑠
 ∗2

 and eigenvectors { 𝑢𝑠
 ∗} satisfy Eq. (13), we obtain 

 

(− 𝜔𝑠
 ∗2[𝑀] + [𝐾] + 𝑗[𝐾′]){ 𝑢𝑠

 ∗} = {0} (18) 
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Taking the complex conjugate of both sides of Eq. (18) gives 

 

(− 𝜔̅𝑠
 ∗2[𝑀] + [𝐾] − 𝑗[𝐾′]){ 𝑢̅𝑠

 ∗} = {0} (19) 

 

where 𝐴̅∗ denotes the conjugate of 𝐴∗. This result confirms that for Re 𝜔∗ < 0, the eigenvalues are 

𝜔̅𝑠
 ∗2

, and the corresponding eigenvectors are { 𝑢̅𝑠
 ∗}.  

From Eq. (16a), 𝜔̅𝑠
 ∗2

 is given by 

 

𝜔̅𝑠
 ∗2 = 𝜔𝑠

 
 
2(1 − 𝑗2 ℎ𝑠

 ) (20) 

 

Among the two roots of Eq. (20), the one satisfying Re 𝜔̅∗
 𝑠

 < 0 is the desired complex natural circular 

frequency. This is denoted again as 𝜔2
∗

𝑠
 , and can be written as10) 

 

𝜔2
∗

𝑠
 = −√1 + ℎ𝑒𝑠

 2 𝜔𝑠
 + 𝑗 ℎ𝑒 𝜔𝑠

 
𝑠
 (21) 

 

Furthermore, for the conjugate eigenvectors { 𝑢̅𝑠
 ∗}, the following orthogonality conditions hold: 

 

{ 𝑢̅𝑟
 ∗}𝑇[𝑀]{ 𝑢̅𝑠

 ∗} = {0}   (𝑟 ≠ 𝑠),       { 𝑢̅𝑟
 ∗}𝑇([𝐾] − 𝑗[𝐾′]){ 𝑢̅𝑠

 ∗} = {0}   (𝑟 ≠ 𝑠) (22𝑎, 𝑏) 

 

Using Eq. (22a), any vector {𝑤}  can also be expressed as a linear combination of the conjugate 

eigenvectors: 

 

{𝑤} = ∑ 𝛼̅∗
𝑠
 { 𝑢̅∗

𝑠
 },      𝛼̅∗

𝑠
 =

{ 𝑢̅∗
𝑠
 }𝑇[𝑀]{𝑤}

{ 𝑢̅∗
𝑠
 }𝑇[𝑀]{ 𝑢̅∗

𝑠
 }

𝑛

𝑠=1

(23𝑎, 𝑏) 

 

 

3.5 Generalized complex mass and stiffness 

 

Now, multiplying Eq. (18) for Re 𝜔∗ > 0 by { 𝑢𝑠
 ∗}𝑇 and considering Eq. (16a), we obtain 

 

𝜔𝑠
 ∗2 =

𝐾∗
𝑠
 + 𝑗 𝐾′∗

𝑠
 

𝑀∗
𝑠
 = 𝜔𝑠

 
 
2(1 + 𝑗2 ℎ𝑠

 ) (24) 

 

where 𝑀∗
𝑠
  : generalized complex mass for the 𝑠-th mode, 𝐾∗

𝑠
  : generalized real stiffness for the 𝑠-

th mode, 𝐾′∗
𝑠
 : generalized image stiffness for the 𝑠-th mode, and these are defined as follows: 

 

𝑀∗
𝑠
 = { 𝑢∗

𝑠
 }𝑇[𝑀]{ 𝑢∗

𝑠
 },     𝐾∗ = { 𝑢∗

𝑠
 }𝑇

𝑠
 [𝐾]{ 𝑢∗

𝑠
 },    𝐾′∗

𝑠
 = { 𝑢∗

𝑠
 }𝑇[𝐾′]{ 𝑢∗

𝑠
 } (25𝑎, 𝑏, 𝑐) 

 

Similarly, multiplying Eq. (19) for Re 𝜔∗ < 0 by { 𝑢̅𝑠
 ∗}𝑇 and considering Eq. (20), we obtain 

 

𝜔̅𝑠
 ∗2 =

𝐾̅∗
𝑠
 − 𝑗 𝐾̅′∗

𝑠
 

𝑀̅∗
𝑠
 = 𝜔𝑠

 
 
2(1 − 𝑗2 ℎ𝑠

 ) (26) 

 

where 

 

𝑀̅∗
𝑠
 = { 𝑢̅∗

𝑠
 }𝑇[𝑀]{ 𝑢̅∗

𝑠
 },       𝐾̅∗ = { 𝑢̅∗

𝑠
 }𝑇

𝑠
 [𝐾]{ 𝑢̅∗

𝑠
 },    𝐾̅′∗

𝑠
 = { 𝑢̅∗

𝑠
 }𝑇[𝐾′]{ 𝑢̅∗

𝑠
 } (27𝑎, 𝑏, 𝑐) 
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4. TRANSFER FUNCTION BASED ON COMPLEX EIGENMODES 

 

In Eq. (4), we consider the case where 𝜔 > 0  and divide the displacement solution {𝑋(𝑗𝜔)}  by 

𝑋𝑔(𝑗𝜔) to obtain the transfer function {𝐺𝑑(𝑗𝜔)}, which is expressed as a superposition of complex 

eigenmodes { 𝑢∗
𝑠
 }. That is, 

 

{𝐺𝑑(𝑗𝜔)} = ∑ 𝛽∗
𝑠
 { 𝑢∗

𝑠
 }

𝑛

𝑠=1

𝑞𝑑(𝑗𝑠
 𝜔) (28) 

 

where 𝑞𝑑(𝑗𝑠
 𝜔) is a function of frequency representing the contribution of the 𝑠-th mode, and 𝛽∗

𝑠
  is 

the complex stimulus coefficient. This is equal to the coefficient obtained when the vector {1}  is 

expanded in Eq. (15), namely: 

 

{1} = ∑ 𝛽∗
𝑠
 { 𝑢∗

𝑠
 }

𝑛

𝑠=1

,     𝛽∗
𝑠
 =

{ 𝑢∗
𝑠
 }𝑇[𝑀]{1}

{ 𝑢∗
𝑠
 }𝑇[𝑀]{ 𝑢∗

𝑠
 }

(29𝑎, 𝑏) 

 

Note that 𝛽∗
𝑠
 { 𝑢∗

𝑠
 } is called the complex stimulus function, and its sum equals {1}, as shown in Eq. 

(29a). 

Substituting {𝑋(𝑗𝜔)} = 𝑋𝑔(𝑗𝜔){𝐺𝑑(𝑗i𝜔)} and Eq. (29a) into Eq. (4) for ω > 0, then multiplying 

by { 𝑢∗
𝑠
 }𝑇 and considering the orthogonality in Eq. (14), we obtain: 

 

𝑞𝑑(𝑗𝑠
 𝜔) = −

1

−𝜔2 +
𝐾∗ + 𝑗𝑠

 𝐾′∗
𝑠
 

𝑀∗
𝑠
 

(30)
 

 

Now, by replacing the second term in the denominator of Eq. (30) with Eq. (24), we obtain Eq. (31) 

using 𝜔𝑠
  and ℎ𝑠

  as follows: 

 

𝑞𝑑(𝑗𝑠
 𝜔) = −

1

𝜔𝑠
 2

1

1 − (
𝜔
𝜔𝑠

 )
2

+ 𝑗2 ℎ𝑠
 

 (31)
 

 

Next, considering 𝜔 < 0 in Eq. (4) and expressing the ratio of the solution {𝑋(𝑗𝜔)} to 𝑋𝑔(𝑗𝜔) 

as a superposition of eigenmodes { 𝑢̅∗
𝑠
 } , and applying the same procedure, we obtain the transfer 

function {𝐺̅𝑑(𝑗𝜔)}, which exhibits conjugate symmetry with {𝐺𝑑(𝑗𝜔)}, as follows: 

 

{𝐺̅𝑑(𝑗𝜔)} = ∑ 𝛽̅∗
𝑠
 { 𝑢̅∗

𝑠
 }

𝑛

𝑠=1

𝑞̅𝑑(𝑗𝑠
 𝜔) (32) 

where: 

{1} = ∑ 𝛽̅∗
𝑠
 { 𝑢̅∗

𝑠
 }

𝑛

𝑠=1

,     𝛽̅∗
𝑠
 =

{ 𝑢̅∗
𝑠
 }𝑇[𝑀]{1}

{ 𝑢̅∗
𝑠
 }𝑇[𝑀]{ 𝑢̅∗

𝑠
 }

(33𝑎, 𝑏) 

and: 

𝑞̅𝑑(𝑗𝑠
 𝜔) = −

1

𝜔𝑠
 2

1

1 − (
𝜔
𝜔𝑠

 )
2

− 𝑗2 ℎ𝑠
 

(34)
 

 

At the singular point, 𝜔 = 0 (sgn(𝜔)＝ 0) , the transfer function is given by the following 
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equation when the 𝑠 -th eigen circular frequency of the real eigenvalue problem is 𝜔0
 

𝑠
   and the 

corresponding eigenvector is { 𝑢𝑠
 }: 

 

{𝐺𝑑(0)} = − ∑ 𝛽𝑠
 { 𝑢𝑠

 }

𝑛

𝑠=1

1

𝜔0
2

𝑠
 

(35) 

where: 

{1} = ∑ 𝛽𝑠
 { 𝑢𝑠

 }

𝑛

𝑠=1

,     𝛽𝑠
 =

{ 𝑢𝑠
 }𝑇[𝑀]{1}

{ 𝑢𝑠
 }𝑇[𝑀]{ 𝑢𝑠

 }
(36𝑎, 𝑏) 

 

here, 𝛽𝑠
  is the real stimulus coefficient, and 𝛽𝑠

 { 𝑢𝑠
 } is the real stimulus function. 

 

 

5. TRANSFER FUNCTION BASED ON REAL MODES 

 

In Eq. (4), we consider the case 𝜔 > 0 and divide the displacement solution {𝑋(𝑗𝜔)} by 𝑋𝑔(𝑗𝜔) to 

obtain {𝐺0𝑑(𝑗𝜔)}, which is expressed as a superposition of real eigenmodes { 𝑢𝑠
 }. In other words: 

 

{𝐺0𝑑(𝑗𝜔)} = ∑ 𝛽𝑠
 { 𝑢𝑠

 }

𝑛

𝑠=1

𝑞0𝑑(𝑗𝑠
 𝜔) (37) 

 

Substituting {𝑋(𝑗𝜔)} = 𝑋𝑔(𝑗𝜔){𝐺0𝑑(𝑗𝜔)}  and Eq. (36a) into Eq. (4) for 𝜔 > 0 , multiplying by 

{ 𝑢𝑠
 }𝑇, considering the orthogonality conditions given in Eq. (38a) and (38b), as well as the approximate 

orthogonality condition given in Eq. (38c): 

 

{ 𝑢𝑟
 }𝑇[𝑀]{ 𝑢𝑠

 } = 0,     { 𝑢𝑟
 }𝑇[𝐾]{ 𝑢𝑠

 } = 0,     { 𝑢𝑟
 }𝑇[𝐾′]{ 𝑢𝑠

 } ≈ 0     (𝑟 ≠ 𝑠) (38𝑎, 𝑏, 𝑐) 

 

we obtain: 

𝑞0𝑑(𝑗𝑠
 𝜔) = −

1

𝜔0
2

𝑠
 

1

1 − (
𝜔
𝜔0𝑠

 )
2

+ 𝑗2 ℎ0𝑠
 

 (39)
 

where: 

𝜔0
2 =

{ 𝑢𝑠
 }𝑇[𝐾]{ 𝑢𝑠

 }

{ 𝑢𝑠
 }𝑇[𝑀]{ 𝑢𝑠

 }𝑠
 ,   ℎ0𝑠

 =
1

2

{ 𝑢𝑠
 }𝑇[𝐾′]{ 𝑢𝑠

 }

{ 𝑢𝑠
 }𝑇[𝐾]{ 𝑢𝑠

 }
(40𝑎, 𝑏) 

 

and ℎ0𝑠
  corresponds to the strain-energy proportional damping18), 19) of the 𝑠-th mode, as shown in 

Appendix 2.  

Next, considering the case 𝜔 < 0 in Eq. (4) and expressing the ratio of the solution  {𝑋(𝑗𝜔)} to 

𝑋𝑔(𝑗𝜔) as a superposition of real eigenmodes { 𝑢𝑠
 }, applying a similar procedure yields the following 

equation, which is the conjugate symmetric counterpart of Eq. (37). 

 

{𝐺̅0𝑑(𝑗𝜔)} = ∑ 𝛽𝑠
 { 𝑢𝑠

 }

𝑛

𝑠=1

𝑞̅0𝑑(𝑗𝑠
 𝜔) (41) 

where: 

𝑞̅𝑑(𝑗𝑠
 𝜔) = −

1

𝜔0
2

𝑠
 

1

1 − (
𝜔
𝜔0𝑠

 )
2

− 𝑗2 ℎ0𝑠
 

(42)
 

 

The value of the transfer function {𝐺0𝑑(0)} at the singular point is given by Eq. (35). In a previous 
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study18), which employed strain-energy proportional damping, seismic response calculations were 

conducted using a viscous damping system. This approach differs from the method presented in this 

chapter, which directly considers the complex damping system. 

 

 

6. EXAMPLE OF NUMERICAL CALCULATION 

 

Numerical calculations were performed using a building model (seismic vibration control structure) with 

the specifications shown in Table 1, as proposed in Ref. 17). This model is a six-degree-of-freedom 

shear-type system. In the original model, damping of approximately 13% is applied to the three lower 

floors equipped with dampers to achieve a first-mode damping ratio of around 10%. However, in this 

study, in order to more clearly observe the effects of non-proportional damping, a trial case with a larger 

damping ratio of 20% was considered. 

 

Table 1 Building model 

 

 

The numerical calculations are conducted using three methods: the method based on simultaneous 

equations in Chap. 2 (hereinafter referred to as the direct method), the method based on the superposition 

of complex modes in Chap. 4 (the complex mode method), and the method based on the superposition 

of real modes in Chap. 5 (the real mode method). 

Table 2 presents the natural frequencies and damping constants for each mode. The complex 

eigenvalue calculations are performed using the Stodola method19) for complex problems. The norm 

error of the complex eigenvectors before and after iteration is set to be less than 10−7. Here, 

𝑓(= 𝜔𝑠
 /2𝜋)𝑠

   represents the eigenfrequency obtained from the complex eigenvalue analysis, while 

𝑓0𝑠
 (= 𝜔0𝑠

 /2𝜋) is the eigenfrequency obtained from the real eigenvalue analysis. From Table 2, it can 

be observed that, in this case study, the damping ratio of the first mode is approximately 15%, and that 

the modal damping values ℎ0 𝑠
 obtained by the real mode method agree closely with those obtained by 

the complex mode method ℎ𝑠
  up to the fourth mode. 

  

Table 2 Natural frequencies and damping 

 

6 200 60,000 0.02

5 200 70,000 0.02

4 200 75,000 0.02

3 200 80,000 0.20

2 200 85,000 0.20

1 200 95,000 0.20

No.
m i

(ton)

k i

(kN/m)
h i

Mode No. 1 2 3 4 5 6

s f  (Hz) 0.793 2.21 3.57 4.57 5.51 6.02

s f 0  (Hz) 0.782 2.20 3.48 4.58 5.45 6.12

s h 0.147 0.077 0.088 0.102 0.051 0.180

s h 0 0.152 0.081 0.098 0.097 0.078 0.154
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Figures 2(a)–(c) display the transfer functions of displacement, velocity, and acceleration of the 

top mass, respectively, comparing the results obtained by the direct method and the complex mode 

method. The upper panels of the figures show the response factor for an input of 1 gal (= 𝑐𝑚/𝑠2), 
while the lower panels illustrate the phase characteristics. Both the response factor and phase 

characteristics exhibit perfect agreement between the direct method and the complex mode method, 

confirming the validity of the complex mode method. 

Figure 3 compares the transfer functions obtained by the complex mode method and the real mode 

method. The differences between the two methods are minor in both response factors and phase 

characteristics. 

Seismic response calculations are performed using the inverse Fourier transform16) of the product of 

the Fourier transform of the input ground motion and the transfer function. The ground motion is the  

(a) Displacement (b) Velocity (c) Acceleration

Fig. 2 Transfer function (complex mode method vs. direct method) 

(a) Displacement (b) Velocity (c) Acceleration

Fig. 3 Transfer function (complex mode method vs. real mode method) 
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BCJ-L2 wave20) with a maximum amplitude of 355 gal. The data length was set to 163.84 s by appending 

trailing zeros to the original 120 s wave, where 163.84 s corresponds to a time interval of 0.01 s 

multiplied by a total of 214. The total number of data points is set as a power of 2 to accommodate the 

fast Fourier transform method. 

Figure 4 compares the maximum response values obtained by the complex mode method with those 

obtained by the real mode method. As expected from Fig. 3, the two methods show close agreement, 

demonstrating that the real mode method is a useful engineering approach. The maximum errors are 3% 

for displacement, 5% for velocity, and 8% for acceleration. 

 

 

   

(a) Displacement (b) Velocity (c) Acceleration 

Fig. 4 Maximum responses (complex mode method vs. real mode method) 

 

 

7. CONCLUSIONS 

 

(1) A method was presented for obtaining the complex eigenvalues and complex eigenvectors of 

forward and backward waves by solving the eigenvalue problem of the time domain equations of 

motion of a multi-mass model with non-proportional complex damping. This includes the damping 

force by Inaudi et al., expressed as the product of the Hilbert transform of the response displacement 

and the imaginary part of the complex stiffness. The application of the Hilbert transform utilizes the 

fact that free vibration consists of a single frequency component. 

(2) Using the orthogonality of complex eigenvectors, it was shown that the transfer function of each 

mass can be represented as a superposition of the transfer functions of each mode, enabling complex 

modal analysis. Additionally, since the transfer function satisfies conjugate symmetry, it can be 

computed if the complex eigenvalues and complex eigenvectors of the forward wave for the system 

are known. 

(3) Using real eigenvectors, the transfer function of each mass is expressed as a superposition of the 

transfer functions for each mode. Assuming approximate orthogonality of the damping matrix (the 

imaginary part of the complex stiffness), the obtained transfer function is also approximate. The 

modal damping in this model corresponds to energy-proportional damping. 

(4) Numerical calculations were performed for a six-story vibration control structure with 20% 

damping in the bottom three stories. The calculations were conducted using the direct method (Chap. 

2), the complex mode method (Chap. 4), and the real mode method (Chap. 5). 

(5) A comparison of the transfer functions computed by the direct method and the complex mode 

method showed perfect agreement in both response factor and phase characteristics, verifying the 

validity of the complex mode method. A comparison between the complex mode method and the real 

mode method demonstrated that the response factor and phase characteristics were nearly identical. 

(6) Seismic response calculations were conducted using the BCJ-L2 wave as input ground motion, 

employing both the complex mode and real mode transfer functions. The errors in the real mode 

method relative to the complex mode method for maximum response values were 3%, 5%, and 8% 
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for displacement, velocity, and acceleration, respectively, confirming that the real mode method is 

useful for engineering applications. 

(7) The numerical model in this study assumed 20% damping in the lower three stories. The accuracy 

of the real mode method is influenced by the damping distribution and the input ground motion used, 

necessitating further investigation under different conditions. Future research should focus on the 

applicability of arbitrarily placed damping in vibration control structures and seismic isolation 

structures with significant damping at the base. 

 

 

EXPLANATORY NOTE 

 

This paper is a revised version of an abstract21) submitted to the 17th Annual Conference of the Japan 

Association for Earthquake Engineering. Notably, in this paper, the symbol for the transfer function in 

the complex modal method has been changed from {𝐺𝑑
′ (i𝜔)} to {𝐺𝑑(i𝜔)}}. Additionally, the transfer 

function related to causality in the same abstract and Ref. 10) was found to correspond to the transfer 

function of the equivalent viscous damping model6), 22). Consequently, the related descriptions have been 

omitted. The influence of non-causality remains a topic for future research. 

 

 

APPENDIX 1: DERIVATION OF THE NATURAL CIRCULAR FREQUENCY—SUMMARY 

OF THE METHOD IN REFERENCE 10) 

 

The eigenvalues for the case Re ω* > 0 are given by Eq. (16a), which is restated in Eq. (A1): 

 

𝜔𝑠
 ∗2 = 𝜔2

𝑠
 (1 + 𝑗2 ℎ𝑠

 ) (𝐴1) 

 

Expressing the right-hand side of Eq. (A1) using Euler's relation: 

 

𝜔𝑠
 ∗2 = √1 + 4 ℎ𝑠

 2 𝜔2
𝑠
 𝑒𝑗2𝜑 (𝐴2) 

where 

cos 2𝜑 =
1

√1 + 4 ℎ𝑠
 2

,   sin 2𝜑 =
2 ℎ𝑠

 

√1 + 4 ℎ𝑠
 2

(𝐴3𝑎, 𝑏) 

 

Using the double-angle formula, we obtain: 

 

cos 𝜑 =
√1 + 4 ℎ𝑠

 2 + 1

√(√1 + 4 ℎ𝑠
 2 + 1)

2
+ 4 ℎ𝑠

 2

,   sin 𝜑 =
2 ℎ𝑠

 

√(√1 + 4 ℎ𝑠
 2 + 1)

2
+ 4 ℎ𝑠

 2

(𝐴4𝑎, 𝑏)
 

 

Taking the square root of Eq. (A2): 

 

𝜔𝑠
 ∗ = ±√1 + 4 ℎ𝑠

 24
 𝜔𝑠

  𝑒𝑗𝜑 = ± √1 + 4 ℎ2
𝑠
 4

 𝜔𝑠
  (cos 𝜑 + 𝑗 sin 𝜑) (𝐴5) 

 

Substituting Eq. (A4) into the rightmost side of Eq. (A5) and rearranging: 

 

𝜔𝑠
 ∗ = ± (√1 + ℎ𝑒𝑠

 2 𝜔 𝑠
 + 𝑗 ℎ𝑒 𝑠

 𝜔 𝑠
 ),   ℎ𝑒 𝑠

 = √√1 + 4 ℎ𝑠
 2 − 1

2
(𝐴6𝑎, 𝑏) 

 

Here, the natural circular frequency 𝜔 
∗

𝑠
  of the forward wave satisfying Re ω* > 0 is again expressed 

in terms of 𝜔1
∗

𝑠
 , yielding the following Eq. (A7), which corresponds to Eq. (17a) in the main text: 
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𝜔1
∗

𝑠
 = √1 + ℎ𝑒𝑠

 2 𝜔 𝑠
 + 𝑗 ℎ𝑒 𝑠

 𝜔𝑠
 (𝐴7) 

 

The case Re ω* > 0 has been discussed above, but a similar operation on Eq. (20) for the case Re ω* < 

0 can be performed to obtain Eq. (21). 

Although equations similar to Eq. (A6) can be found in Refs. 4) and 5), they are derived from 

inconsistent equations of motion and therefore lack logical coherence both in the derivation process and 

in the selection of eigenvalues. 

 

APPENDIX 2: STRAIN ENERGY PROPORTIONAL DAMPING 

 

Equation (40b) is restated as Eq. (A8), and it is shown that this equation is equivalent to the strain energy 

proportional damping model: 

 

ℎ0𝑠
  =

1

2

{ 𝑢𝑠
  }𝑇[𝐾′]{ 𝑢𝑠

  }

{ 𝑢𝑠
  }𝑇[𝐾]{ 𝑢𝑠

  }
(𝐴8) 

 

The matrices [𝐾] , [𝐾′] , and the vector { ∆𝑠
 }  are expressed using the transformation matrix [𝑇]  as 

follows: 

 

[𝐾] = [𝑇]𝑇[ 𝑘𝑖⋱ 
⋱ ][𝑇],    [𝐾′] = [𝑇]𝑇[ 𝑘𝑖

′
⋱ 

⋱ ][𝑇],    { ∆𝑠
 } = [𝑇]{ 𝑢𝑠

 }  (𝐴9𝑎, 𝑏, 𝑐) 

 

here, { ∆𝑠
 } is a column vector whose elements represent the relative displacements ∆𝑖𝑠

  between the 𝑖-
th and (𝑖 − 1)-th masses in the 𝑠-th mode. In addition, [T] can be shown, using a three-mass system 

model as an example, as follows: 

 

 [𝑇] = [
1 0 0

−1 1 0
0 −1 1

] (𝐴10) 

 

By substituting Eq. (A9) into Eq. (A8), the denominator and numerator can be rewritten as: 

 

2{ 𝑢𝑠
 }𝑇[𝐾]{ 𝑢𝑠

 } = 2{ 𝑢𝑠
 }𝑇[𝑇]𝑇[ 𝑘𝑖⋱ 

⋱ ][𝑇]{ 𝑢𝑠
 } = 2{ ∆𝑠

 }𝑇[ 𝑘𝑖⋱ 
⋱ ]{ ∆𝑠

 } = 2 ∑ 𝑘𝑖

𝑛

𝑖=1

∆𝑖
2

𝑠
 = 4 ∑ 𝐸𝑖𝑠

 

𝑛

𝑖=1

(𝐴11𝑎) 

 

{ 𝑢𝑠
 }𝑇[𝐾′]{ 𝑢𝑠

 } = { 𝑢𝑠
  }𝑇[𝑇]𝑇[ 𝑘𝑖

′
⋱ 

⋱ ][𝑇]{ 𝑢𝑠
 } = { ∆𝑠

 }𝑇[ 𝑘𝑖
′
⋱ 

⋱ ]{ ∆𝑠
 } = ∑ 𝑘𝑖

′

𝑛

𝑖=1

∆𝑖
2

𝑠
 = 4 ∑ ℎ𝑖 𝐸𝑖𝑠

 

𝑛

𝑖=1

(𝐴11𝑏) 

 

Here, 𝐸𝑖𝑠
  represents the strain energy of the 𝑖-th element in the 𝑠-th mode, defined as: 

 

𝐸𝑖 =
𝑘𝑖 ∆𝑖

2
𝑠
 

2𝑠
 (𝐴12) 

 

Substituting Eq. (A11) into Eq. (A8) yields: 

 

ℎ0𝑠
 =

∑ ℎ𝑖 𝐸𝑖𝑠
 𝑛

𝑖=1

∑ 𝐸𝑖𝑠
 𝑛

𝑖=1

(𝐴13) 

 

Equation (A13) is the fundamental definition of strain energy proportional damping18). 
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