’. Journal of Japan Association for Earthquake Engineering, Vol. 25, No. 13, 2025

[Technical Paper (Translated Paper) ]

EIGENVALUE PROBLEM OF MDOF
NON-PROPORTIONAL COMPLEX DAMPING
SYSTEM AND TRANSFER FUNCTION BY MODE
SUPERPOSITION

Yuzuru YASUI!, Toshiro MAEDA? and Michio IGUCHI?

! Member, Dr. Eng., Adjunct Researcher, Research Institute for Science and Engineering,
Waseda University,
Tokyo, Japan, yasui@mx5.mesh.ne.jp
2 Member, Dr. Eng., Professor, Department of Architecture, School of Creative Science and
Engineering, Waseda University,
Tokyo, Japan, tmaeda@waseda.jp
3 Member, Dr. Eng., Emeritus Professor, Tokyo University of Science,
Tokyo, Japan, iguchi@rs.noda.tus.ac.jp

ABSTRACT: First, we present a method for obtaining the eigenvalues and eigenvectors
of a multi-degree-of-freedom system with nonproportional complex damping. These
eigenvalues and eigenvectors are complex and appear in conjugate pairs, corresponding to
the number of masses, with forward waves and their conjugate backward waves. By
leveraging the orthogonality of the eigenvectors, we show that the seismic transfer function
for each mass can be expressed as a superposition of the transfer functions of the complex
modes of the forward wave, exhibiting conjugate symmetry. Similarly, using the
orthogonality of the real eigenvectors, we derive an approximate transfer function by
superimposing the transfer functions of the real modes. Finally, numerical calculations
using a simple model are performed to validate the proposed complex eigenvalue analysis
method and the transfer function based on complex modes. Additionally, we discuss the
reliability of the transfer function derived from real modes.

Keywords: Multi-degree-of-freedom system, Complex damping, Nonproportional
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1. INTRODUCTION

It has been suggested that the damping of structures may be complex damping (also referred to as
hysteresis damping or structural damping), which remains constant!: ? with respect to frequency, rather
than viscous damping, which is proportional to frequency. The concept of complex damping was
originally introduced in the harmonic vibration analysis of aircraft flutter® and has since been
incorporated into the equations of motion of structures®. Its application has raised several issues, mainly
in the context of single-degree-of-freedom (SDOF) systems, as summarized below:
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(1) Differences from the viscous damping case in parameters such as the damped natural
frequency?.

(2) The inconsistency between equations of motion in the frequency domain and those in the time
domain®- 9,

(3) The necessity of introducing the sign function to ensure that the response remains a real value®.

(4) The issue that the impulse response, obtained via the inverse Fourier transform of the transfer
function, becomes non-causal®, and the challenges associated with evaluating the integral of the
inverse Fourier transform”-®.

(5) The proposal of an equivalent viscous damping model®.

Among these issues, if we accept that the response is non-causal, the remaining major concern is the
second issue, i.e., the inconsistency between equations of motion in different domains, for which a
solution has been sought.

Inaudi and Kelly” proposed a time-domain representation of the equation of motion, incorporating
the damping force as the product of the imaginary part of the complex stiffness and the Hilbert transform
of the displacement response. The Fourier transform of this equation of motion is consistent with the
well-known frequency-domain equation, thereby resolving the above inconsistency. Building upon this
approach, the authors'® demonstrated that the complex eigenvalues of the forward and backward waves
for an SDOF system can be obtained. In doing so, they noted that the displacement response in free
vibration consists of a single frequency component and that the Hilbert transform of a free wave is
equivalent to advancing the phase by m/2'" 12,

In recent years, the number of buildings employing base-isolation and vibration control systems has
been increasing. To evaluate the seismic damping effectiveness of such structures, it would be beneficial
to develop a method for complex eigenvalue analysis of multi-degree-of-freedom (MDOF) systems with
nonproportional complex damping, where damping values vary across different parts of the system.
Additionally, a modal analysis method utilizing these results would be useful. Although pioneering
studies'® ' have explored this approach, their theoretical formulations remain incomplete. Therefore,
there is a need to establish a theoretically consistent method for complex eigenvalue analysis of MDOF
systems with nonproportional complex damping.

In this paper, we first present a method for obtaining the complex eigenvalues and complex
eigenvectors of the forward and backward waves in an MDOF system by solving the eigenvalue problem
for the time-domain equation of motion, including the damping force proposed by Inaudi and Kelly.
When applying Hilbert transform, we note that, as in the SDOF case, free vibration consists of a single
frequency component. Utilizing the orthogonality of the complex eigenvectors, we show that the transfer
function of each mass can be obtained by superimposing the transfer functions of the complex modes.
Since these transfer functions exhibit conjugate symmetry, only the complex eigenvalues and
eigenvectors of the forward waves (equal in number to the masses) are required for calculations. This
makes the method significantly more efficient than the nonproportional viscous damping approach'?,
which requires twice as many eigenvalues and mode shapes as the number of masses. Next, as an
approximate method, we show that the transfer function of each mass can be obtained by superimposing
the transfer functions of real modes, derived from real eigenvalue analysis. Seismic response
calculations are performed using a modal analysis approach, which involves superimposing the
responses obtained via the inverse Fourier transform'® of the product of the Fourier transform of the
input acceleration and the transfer function of each mode. The following sections describe the complex
eigenvalue analysis method and the derivation of transfer functions, followed by numerical simulations
using a vibration control structure!” as an example to validate the complex modal approach and assess
the applicability of the real modal approach. It should be noted that the response prediction method
proposed in this study is based on the assumption of linear response.

2. EQUATION OF MOTION AND TRANSFER FUNCTION

Consider the case where the ground acceleration X, is applied to the base of the shear-type n-mass
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model shown in Fig. 1. Let m; be the i-th mass of this system and let k; and k; be the real and
imaginary parts of the complex stiffness of the i-th story, respectively. Also, let x; be the displacement
of the i-th mass relative to the base. The time-domain equation of motion, following Inaudi and Kelly”,
is given by

[M]{x} + [K]{x} + [K']{2} = —[M]{1}%, €y

where [M] : mass matrix, [K] : matrix consisting of the real part of complex stiffness, [K']: matrix
consisting of the imaginary part of the complex stiffness and, {x}: displacement vector with x; as its
elements, {1} : n-dimensional vector with all elements equal to 1, x,: ground displacement, A :second-

order derivative of A with respect to time t. Additionally, {X} is a vector whose elements are the
Hilbert transform %; of x;, given by

2= JEiORE @

ot —1)

When [K'] is proportional to [K], the system exhibits proportional damping; otherwise, it is
classified as nonproportional damping. The damping ratio h; for the ith story is defined as

1K

| ——
T2k

(3)

In the case of proportional damping, h; takes the same value for each layer.

Fig. 1 Lumped mass model

Applying the Fourier transform to Eq. (1) yields
—w? [MH{X ()} + (K] + j[K'] sgn( w){X Gw)} = —[M]{1}X, (w) (4)

where, {X(jw)}: a vector whose elements are X;(jw), the Fourier transform of x;(t), Xz(jw) : the
Fourier transform of X, (t), j : imaginary unit, w : circular frequency, and A(jw) : a complex function
of w.

In deriving Eq. (4), the Fourier transform of X;(t) is given by

FT[%;(t)] = j sgn(w) X;(jw) (5)

where sgn(w) is the sign function, defined as
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sgn(w) =1(w>0), 0(w=0), —1(w<0) (6)

From Egs. (1) and (4), it is confirmed that the equations of motion in the time and frequency domains
are consistent, thereby resolving the inconsistency issue previously reported®: ®. Eq. (6) also indicates
that Eq. (4) must be treated separately for the cases of forward waves (w > 0), stationary state (w = 0),
and backward waves (w < 0). Furthermore, Eq. (5) shows that the Hilbert transform shifts the phase of
all frequency components by 7/2!"- 12, Therefore, when the frequency is known, Eq. (5) provides a more
convenient representation than Eq. (2).

From Eq. (4), solving for {X(jw)} and taking its ratio to X, (jw), we obtain the transfer function

{G3(jw)} for the relative displacement:

{G4(jw)} = —(—w?[M] + [K] + jIK'] sgn(w))~*[M]{1} ()

where {GJ(jw)} isacolumn vector whose elements are the transfer functions Gg;(jw) for each mass.
From Eq. (7), it follows that {GJ(—jw)} is equal to conjugate of {GJ(jw)}, confirming that the
relation is conjugate symmetric.

The transfer functions for relative velocity {GJ(jw)} and absolute acceleration {GZ(jw)} can be
obtained using {GJ(jw)} as follows:

{62 (jw)} = jo{6d(w)}, {G(w)}=1-w?{Gi(w)} (8a,b)
For brevity, the remainder of this paper will focus on the transfer function for relative displacement.
The seismic response is obtained by applying the inverse Fourier transform'® to the product of the
transfer function (Eq. (7) or Eq. (8)) and the Fourier transform of the input motion. To predict or interpret
the results, it is useful to analyze the natural frequencies, damping constants, and stimulus functions of
each mode.
3. EIGENVALUE ANALYSIS
3.1 Eigenvalue problem
Setting the right-hand side of Eq. (1) to zero yields the homogeneous equation:
[MI{} + [K{x} + [K'|{&} = O 9
Now, let the solution of Eq. (9) be expressed as
{x} = (wles® (10)

In Eq. (10), {u*} is a complex column vector, and w* is the complex circular frequency. The notation
A* indicates that A is a complex quantity.
Substituting Eq. (10) into Eq. (9) and dividing both sides by e/®’t yields

(—ow[M] + [K] + j[K'] sgn(Re w)){u"} = {0} (11)
Here, in the derivation of Eq. (11), the Hilbert transform of e’ “’*t, denoted as H [ej “’*t], is assumed to

be
H[e/®"t] = je/®"t sgn(Re ) (12)
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Equation (12) is derived by shifting the phase of e/R¢ @t by w2012 without using Eq. (2), since the

free vibration solution consists of a single circular frequency component, Re w*. Note that e "M@t jg

not affected by the Hilbert transform because it has no phase information.
Equation (11) represents an eigenvalue problem for determining the eigenvalues w*? and

eigenvectors {u*}. However, it is necessary to separately consider the cases of forward waves Re w* >
0 and backward waves Re w* < 0.

3.2 Eigenvalues and orthogonality for forward waves

First, consider the case where Re w™ > 0. In this case, Eq. (11) simplifies to
(—w**[M] + [K] + jIK'T){u’} = {0} (13)

Solving Eq. (13) yields n eigenvalues sw**(s = 1~n) and corresponding eigenvectors {su*}(s =
1~n). A brief examination shows that these eigenvectors satisfy the orthogonality conditions:

Gu T M{suw} ={0} (r=s), GuY (KI+/IK'D{u}={0} (r#5s) (14a,b)

Using Eq. (14a), any vector {w} can be expanded as a linear combination of the n eigenvectors:

n
{sw T MH{w}
W)= ), = (154, b)
LW s T Ly M)
3.3 Complex eigenvalues and damping
The eigenvalues of the s-th mode, Sa)*z, can be expressed as
1Im jw*?
s = w?(1+j25h), w?=Rew”, h=s—— (16a, b, c)
2 Re ;w*

here, ¢w and ¢h represent the undamped natural circular frequency and complex damping constant
for the s-th mode, respectively. Of the two solutions obtained from Eq. (16a), the one satisfying
Re w* > 0 corresponds to the desired natural frequency w3, given by'®

’ J1+4.h%2-1
sw; = [1+ shezsw + jshesw, she = ~ (17a,b)

2

The parameter ¢h, in Eq. (17b) represents the damping effect and is approximately equal to gh
(e.g., when ¢h=0.2,then jh,~ 0.196). The real part of Eq. (17a) corresponds to the damped natural
frequency, which increases with damping, while the imaginary part represents the exponential decay.
These quantities are fully determined once jw and gh are known. The derivation of Eq. (17) from Eq.
(16a) is detailed in Appendix-1.

3.4 Backward waves and conjugate eigenvalues
Since the eigenvalues Sa)*z and eigenvectors {;u*} satisfy Eq. (13), we obtain

(—sw™*[M] + [K] +j[K']){su"} = {0} (18)
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Taking the complex conjugate of both sides of Eq. (18) gives
(—s@"*IM] + [K] — jIK'T){sa"} = {0} (19)

where A* denotes the conjugate of A*. This result confirms that for Re w* < 0, the eigenvalues are

— 2 . . _
s@*“, and the corresponding eigenvectors are {i*}.

From Eq. (16a), 55*2 is given by
5@ = w*(1 - j25h) (20)

Among the two roots of Eq. (20), the one satisfying Re j@* < 0 is the desired complex natural circular
frequency. This is denoted again as ;w3, and can be written as'®

swz = _1/1 + shezsw + jshesw (21)

Furthermore, for the conjugate eigenvectors {u*}, the following orthogonality conditions hold:

GaY Mi{a} ={0} (r#s), (@I AK]-jIK'D{w}={0} @ #5) (22a,b)

Using Eq. (22a), any vector {w} can also be expressed as a linear combination of the conjugate
eigenvectors:

n

{su"} [M]{w}
(w} = z @), @ = (234, b)
VA N KO U )
3.5 Generalized complex mass and stiffness
Now, multiplying Eq. (18) for Re w* > 0 by { u*}’ and considering Eq. (16a), we obtain
K*+ K"
2o IS o 02(1+ j2,h) (24)

w
N *
M

where (M™ : generalized complex mass for the s-th mode, (K™ : generalized real stiffness for the s-
th mode, (K'*: generalized image stiffness for the s-th mode, and these are defined as follows:

sM* = {su*}T[M]{su*}; K= {su*}T[K]{su*}v SK,* = {SU*}T[K’]{su*} (25a,b,¢)

Similarly, multiplying Eq. (19) for Re w* < 0 by {,u*}" and considering Eq. (20), we obtain
=>—— = w?(1—j2:h) (26)

where

SM* = {sﬂ*}T [M]{sﬂ*}: sl?* = {sﬁ*}T [K]{sa*}: SI?,* = {sﬁ*}T[K’]{Sﬁ*} (27a,b,c¢)
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4. TRANSFER FUNCTION BASED ON COMPLEX EIGENMODES

In Eq. (4), we consider the case where w > 0 and divide the displacement solution {X(jw)} by
X4(jw) to obtain the transfer function {G4(jw)}, which is expressed as a superposition of complex
eigenmodes {,u*}. That is,

n

(Gali)} = ) B’} saa i) (28)

s=1

where q4(jw) is a function of frequency representing the contribution of the s-th mode, and ;f* is
the complex stimulus coefficient. This is equal to the coefficient obtained when the vector {1} is
expanded in Eq. (15), namely:

n

T M1
W=y g, =l 0

s=1 ~ GuyTIMI{u (29a,b)

Note that (B*{su"} is called the complex stimulus function, and its sum equals {1}, as shown in Eq.
(29a).

Substituting {X(jw)} = X, (jw){G4(jiw)} and Eq. (29a) into Eq. (4) for © > 0, then multiplying
by {u*}T and considering the orthogonality in Eq. (14), we obtain:

1

K*+] K"
2 4 s T
w* + M

sqajw) = — (30)

Now, by replacing the second term in the denominator of Eq. (30) with Eq. (24), we obtain Eq. (31)
using ¢w and ¢h as follows:

1 1
(31

sqa(w) = — 2 2
1) ) ,

S 1- (s_w) +]25h
Next, considering w < 0 in Eq. (4) and expressing the ratio of the solution {X(jw)} to X;(jw)

as a superposition of eigenmodes {,u*}, and applying the same procedure, we obtain the transfer

function {G,(jw)}, which exhibits conjugate symmetry with {G;(jw)}, as follows:

n

(Gal)) = ) oF" (@) a0 (32)
where: =
e s LEYTIMIL
{1} = ;sﬁ {u}, = ML) (33a,b)
and:
1 1
sqa(w) = — (34)

s _ (S%)2 — j2sh

At the singular point, w = 0 (sgn(w) = 0), the transfer function is given by the following
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equation when the s-th eigen circular frequency of the real eigenvalue problem is ;w, and the
corresponding eigenvector is {u}:

= 1
{G4(0)} = —;sﬁ{su}ﬁ (35)
where:
c (T IMI{1}
{1} = ; sBlsu}, B = TR (36a,b)

here, ¢ is the real stimulus coefficient, and B{su} is the real stimulus function.

5. TRANSFER FUNCTION BASED ON REAL MODES

In Eq. (4), we consider the case w > 0 and divide the displacement solution {X(jw)} by X;(jw) to
obtain {Gyq(jw)}, which is expressed as a superposition of real eigenmodes { u}. In other words:

(GoaG)} = ) Bt} s0a(e) (37)
s=1
Substituting {X(jw)} = X;(jw){Goq(jw)} and Eq. (36a) into Eq. (4) for w > 0, multiplying by

{su}T, considering the orthogonality conditions given in Eq. (38a) and (38b), as well as the approximate
orthogonality condition given in Eq. (38c¢):

{uy Ml{u} =0, uT[Kl{su} =0, (u}'[K'NHau}=0 (r+#5) (38a,b,¢)

we obtain:

Goa(w) = : : (39)

s4od - 2

0% - (<L) 4 j2hg
where:
T Tl
. {sud [K]{u} U [K'{u} (400, b)

SO T T IMIGuy 5 T 2 G K] G

and (h, corresponds to the strain-energy proportional damping!'®-1? of the s-th mode, as shown in
Appendix 2.

Next, considering the case w < 0 in Eq. (4) and expressing the ratio of the solution {X(jw)} to
Xg(jw) as a superposition of real eigenmodes {su}, applying a similar procedure yields the following
equation, which is the conjugate symmetric counterpart of Eq. (37).

(GoaG)} = ) sBlsu} soaie) (41)
where: =
fuljw) = —— - (42)
sq -
’ 00ty — (L)~ ja,hy

The value of the transfer function {Gy4(0)} at the singular point is given by Eq. (35). In a previous
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study'®, which employed strain-energy proportional damping, seismic response calculations were
conducted using a viscous damping system. This approach differs from the method presented in this
chapter, which directly considers the complex damping system.

6. EXAMPLE OF NUMERICAL CALCULATION

Numerical calculations were performed using a building model (seismic vibration control structure) with
the specifications shown in Table 1, as proposed in Ref. 17). This model is a six-degree-of-freedom
shear-type system. In the original model, damping of approximately 13% is applied to the three lower
floors equipped with dampers to achieve a first-mode damping ratio of around 10%. However, in this
study, in order to more clearly observe the effects of non-proportional damping, a trial case with a larger
damping ratio of 20% was considered.

Table 1 Building model

No. e ki h;
(ton) (kN/m)
6 200 60,000 0.02
5 200 70,000 0.02
4 200 75,000 0.02
3 200 80,000 0.20
2 200 85,000 0.20
1 200 95,000 0.20

The numerical calculations are conducted using three methods: the method based on simultaneous
equations in Chap. 2 (hereinafter referred to as the direct method), the method based on the superposition
of complex modes in Chap. 4 (the complex mode method), and the method based on the superposition
of real modes in Chap. 5 (the real mode method).

Table 2 presents the natural frequencies and damping constants for each mode. The complex
eigenvalue calculations are performed using the Stodola method'” for complex problems. The norm
error of the complex eigenvectors before and after iteration is set to be less than 1077. Here,
f (= sw/2m) represents the eigenfrequency obtained from the complex eigenvalue analysis, while
sfo(= swo/2m) is the eigenfrequency obtained from the real eigenvalue analysis. From Table 2, it can
be observed that, in this case study, the damping ratio of the first mode is approximately 15%, and that
the modal damping values  h, obtained by the real mode method agree closely with those obtained by
the complex mode method ¢k up to the fourth mode.

Table 2 Natural frequencies and damping

Mode No. 1 2 3 4 5 6

JS(Hz) 0793 ] 2.21 | 3.57 | 457 | 5.51 | 6.02
So(Hz) [0.782| 2.20 | 3.48 | 4.58 | 5.45 | 6.12
h 0.147 | 0.077 | 0.088 | 0.102 | 0.051 | 0.180
shy | 0.152]0.081(0.098(0.097 | 0.078 | 0.154
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Figures 2(a)—(c) display the transfer functions of displacement, velocity, and acceleration of the
top mass, respectively, comparing the results obtained by the direct method and the complex mode
method. The upper panels of the figures show the response factor for an input of 1 gal (= cm/s?),
while the lower panels illustrate the phase characteristics. Both the response factor and phase
characteristics exhibit perfect agreement between the direct method and the complex mode method,
confirming the validity of the complex mode method.

Figure 3 compares the transfer functions obtained by the complex mode method and the real mode
method. The differences between the two methods are minor in both response factors and phase
characteristics.

Seismic response calculations are performed using the inverse Fourier transform'® of the product of
the Fourier transform of the input ground motion and the transfer function. The ground motion is the
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Fig. 3 Transfer function (complex mode method vs. real mode method)
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BCJ-L2 wave®” with a maximum amplitude of 355 gal. The data length was set to 163.84 s by appending
trailing zeros to the original 120 s wave, where 163.84 s corresponds to a time interval of 0.01 s
multiplied by a total of 2'%. The total number of data points is set as a power of 2 to accommodate the
fast Fourier transform method.

Figure 4 compares the maximum response values obtained by the complex mode method with those
obtained by the real mode method. As expected from Fig. 3, the two methods show close agreement,
demonstrating that the real mode method is a useful engineering approach. The maximum errors are 3%
for displacement, 5% for velocity, and 8% for acceleration.

6 » 6 » 6 o
5 5 5
4 4 4
z z z
33 g3 %3
< < <
= = =
2 2 2
1 —e— Complex mode 1 —e— Complex mode 1 —o— Complex mode
--o- Real mode --o-- Real mode i --o- Real mod
0 0 0 .
0 5 10 cm 15 20 0 40 cmy/s 80 120 0 300 gal 600 900
(a) Displacement (b) Velocity (c) Acceleration

Fig. 4 Maximum responses (complex mode method vs. real mode method)

7. CONCLUSIONS

(1) A method was presented for obtaining the complex eigenvalues and complex eigenvectors of
forward and backward waves by solving the eigenvalue problem of the time domain equations of
motion of a multi-mass model with non-proportional complex damping. This includes the damping
force by Inaudi et al., expressed as the product of the Hilbert transform of the response displacement
and the imaginary part of the complex stiffness. The application of the Hilbert transform utilizes the
fact that free vibration consists of a single frequency component.

(2) Using the orthogonality of complex eigenvectors, it was shown that the transfer function of each
mass can be represented as a superposition of the transfer functions of each mode, enabling complex
modal analysis. Additionally, since the transfer function satisfies conjugate symmetry, it can be
computed if the complex eigenvalues and complex eigenvectors of the forward wave for the system
are known.

(3) Using real eigenvectors, the transfer function of each mass is expressed as a superposition of the
transfer functions for each mode. Assuming approximate orthogonality of the damping matrix (the
imaginary part of the complex stiffness), the obtained transfer function is also approximate. The
modal damping in this model corresponds to energy-proportional damping.

(4) Numerical calculations were performed for a six-story vibration control structure with 20%
damping in the bottom three stories. The calculations were conducted using the direct method (Chap.
2), the complex mode method (Chap. 4), and the real mode method (Chap. 5).

(5) A comparison of the transfer functions computed by the direct method and the complex mode
method showed perfect agreement in both response factor and phase characteristics, verifying the
validity of the complex mode method. A comparison between the complex mode method and the real
mode method demonstrated that the response factor and phase characteristics were nearly identical.

(6) Seismic response calculations were conducted using the BCJ-L2 wave as input ground motion,
employing both the complex mode and real mode transfer functions. The errors in the real mode
method relative to the complex mode method for maximum response values were 3%, 5%, and 8%
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for displacement, velocity, and acceleration, respectively, confirming that the real mode method is
useful for engineering applications.

(7) The numerical model in this study assumed 20% damping in the lower three stories. The accuracy
of the real mode method is influenced by the damping distribution and the input ground motion used,
necessitating further investigation under different conditions. Future research should focus on the
applicability of arbitrarily placed damping in vibration control structures and seismic isolation
structures with significant damping at the base.

EXPLANATORY NOTE

This paper is a revised version of an abstract?" submitted to the 17th Annual Conference of the Japan
Association for Earthquake Engineering. Notably, in this paper, the symbol for the transfer function in
the complex modal method has been changed from {G;(iw)} to {G4(iw)}}. Additionally, the transfer
function related to causality in the same abstract and Ref. 10) was found to correspond to the transfer

function of the equivalent viscous damping model®:?2. Consequently, the related descriptions have been
omitted. The influence of non-causality remains a topic for future research.

APPENDIX 1: DERIVATION OF THE NATURAL CIRCULAR FREQUENCY—SUMMARY
OF THE METHOD IN REFERENCE 10)

The eigenvalues for the case Re o* > 0 are given by Eq. (16a), which is restated in Eq. (A1):
sw'? = w1 +j2,h) (A1)

Expressing the right-hand side of Eq. (A1) using Euler's relation:

s =1+ 4,02 w?el?® (A2)

where
2 ! in 2 25 (43a,b)
COS2¢ = ————, SIin2¢ = —— a,
J1+4gh? J1+4gh?
Using the double-angle formula, we obtain:
1+4h%2+1 2sh
cos@ = 2 = , sing = 2 - (A4a,b)
\/( T+ 4502 +1) +44h2 \/( T+ 402 +1) +44h?
Taking the square root of Eq. (A2):
W' =+Y1+4.h% wel? =+ 3/1+4,h2 0 (cose + jsin @) (A5)

Substituting Eq. (A4) into the rightmost side of Eq. (A5) and rearranging:

J1+4.h%2—-1
sw* =-_|-< /1+shezsw +jshesw>, he = A S — (A6a,b)

2

Here, the natural circular frequency  w* of the forward wave satisfying Re o* > 0 is again expressed
in terms of ,wj, yielding the following Eq. (A7), which corresponds to Eq. (17a) in the main text:
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swi = ,’ 1+ shezsw +jshe s (A7)

The case Re o* > 0 has been discussed above, but a similar operation on Eq. (20) for the case Re o* <
0 can be performed to obtain Eq. (21).

Although equations similar to Eq. (A6) can be found in Refs. 4) and 5), they are derived from
inconsistent equations of motion and therefore lack logical coherence both in the derivation process and
in the selection of eigenvalues.

APPENDIX 2: STRAIN ENERGY PROPORTIONAL DAMPING

Equation (40D) is restated as Eq. (A8), and it is shown that this equation is equivalent to the strain energy
proportional damping model:

1 {su}" K" T{su}

sho = 5 LT K100

(48)

The matrices [K], [K'], and the vector {;A} are expressed using the transformation matrix [T] as
follows:

[K] = [T1"[ "k JIT], (K1 =TTk JIT], {sA} = [T1{su} (A9a,b,c)

here, {;A} isa column vector whose elements represent the relative displacements (A; between the i-
th and (i — 1)-th masses in the s-th mode. In addition, [T] can be shown, using a three-mass system
model as an example, as follows:

1 0 O
[T] = [—1 1 0] (A10)
0 -1 1

By substituting Eq. (A9) into Eq. (A8), the denominator and numerator can be rewritten as:

20" K1) = 20" (T [ JTHawd = 268V [e, 683 =2 ) ki s8F=4 ) S (4110)
i=1 i=1

("R 1w = (" Tk JITIGwd = (03[ J68) = D ki =4 ) hisFi - (A11b)
i=1 i=1

Here, (E; represents the strain energy of the i-th element in the s-th mode, defined as:

ki A7
sBy =—— (A12)
Substituting Eq. (A11) into Eq. (A8) yields:
Z?—l hisEi
ho =7+ (A13)
0 Z?:l SEl

Equation (A13) is the fundamental definition of strain energy proportional damping'®.
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