

World Conference on Earthquake Engineering (15WCEE), Lisbon, 24 September 2012 Special Session on "Great East Japan Earthquake 2011"

Accident of Fukushima Daiichi NPP on March 11, 2011

Tsuyoshi Takada The University of Tokyo takada@load.arch.t.u-tokyo.ac.jp

Summary

- **1. Outline of accident of Fukushima Daiichi NPP**
- **2. Ground motion**
- 3. Great Tsunami
- 4. Behavior of Plants
- **5. Conclusion: Lessons learned from Accident**

Fukushima Daiichi NPPs operated by TEPCO

NPPs in Eastern Coast of Japan

Nuclear Power Plants in Japan

1F : Fukushima Daiichi 2F : Fukushima Daini

Overview of Mark-I Type BWR (Units 1 to 5)

Suppression Chamber (S/C)

Updated 2011.03.27

出典: http://nei.cachefly.net/static/images/BWR_illustration.jpg

2. Earthquake Ground Motion

Great East Japan Earthquake

Scope & duration of the ground acceleration

Recorded Intensity of Ground Motion and Design Earthquake Ground Motion

		Observed Maximum Response Acceleration * (Gal)			Max Response Acceleration against Basic Earthquake Ground Motion (Gal), Ss		
		Horizontal (N- S)	Horizontal (E-W)	Vertical	Horizontal (N-S)	Horizontal (E-W)	Vertical
Fukushima Daiichi	Unit 1	460	447	258	487	489	412
	Unit 2	348	550	302	441	438	420
	Unit 3	322	507	231	449	441	429
	Unit 4	281	319	200	447	445	422
	Unit 5	311	548	256	452	452	427
	Unit 6	298	444	244	445	448	415
Fukushima Daini	Unit 1	254	230	305	434	434	512
	Unit 2	243	196	232	428	429	504
	Unit 3	277	216	208	428	430	504
	Unit 4	210	205	288	415	415	504

* At the lowest basement of reactor building

Comparison of 2011 Great East Japan Earthquake and 2007 NCO Earthquake

All rights reserved. Tokyo Electric Power Co., Inc.

16

Estimated rock outcrop motion: Fukushima dai-ichi south downhole

Response spectra of DBGMs and rock outcrop motion (NS&EW)

Response spectra of DBGMs and rock outcrop motion (UD)

TAKA

Aftershocks of March 11 Earthquake

Location of Aftershocks

Occurrence History of Aftershocks (1 year)

3. Tsunami

Tsunami triggered by the Great East Japan Earthquake

Tsunami, March 11, 2011

15.5 m from the sea level

Tsunami height in Fukushima Daiichi was about 15 m.

Comparison of Tsunami Height between Daiichi and Daini

AKADA LAB. UT

Fukushima Daiichi

* Based on 2002 guidelines for NPPs issued by the Nuclear Civil Engineering Committee of JSCE

Fukushima Daini

4. Behavior of Plant

Basic Safety Requirements of NPP

Three Fundamental Principles to Prevent Accident

Differences among Units 1-4 of Fukushima Dai-ichi

ADA LAB. UT Fukushima Daiichi Units 5 & 6

- Elevation of the ground is 13 m. (Units 1 4 : 10m)
- One air cooled EDG of Unit 6 which is located on the ground level was survived.
- Metal Clad Switchgears were not lost.
- Temporary sea water pump installed after the earthquake was operable, making use of power from survived EDG.

Fukushima Daini NPPs

- External power was not lost.
- RHR function of Unit 3 was survived.
- Motors of sea water pumps for Unit 1,2 and 4 were replaced by March 14, followed by re-activation of core cooling function.

Onagawa NPPs

 Elevation of the plants was 14.8m which is higher than Tsunami height.

≻ <u>Tokai-2</u>

• Although off-site power was lost until May 13, 2 out of 3 EDGs were not lost thanks to the recently installed barrage to one of 2 seawater pump area to protect pumps from tsunami.

5. Conclusion Lessons learned from Accident

Lessons learned from Accident

1 Need of appropriate DB scenario for Anti-tsunami design method based on risk concept

<u>Design basis tsunami height 5.7m against 15m of actual tsunami height</u>

2 Severe Accident Management

Need of **robustness and diversity** in responding to beyond DBAs such as station black-out for long-duration, loss of ultimate heat sink -Appropriate design philosophy to sustain safety function against common cause failures brought by natural hazards -Appropriate AM measures for both prevention and mitigation of SAs

- 3 Implementation of Seismic PRA and Tsunami PRA Including their interaction assessment Response and Preparedness based on residual risk Effective measure to the unforseen events
- **4 Total Risk Management (Robustness)** Covering total system behavior and on-site and off-site facilities

END

Thank you for your attention.

