第2回リモートセンシング技術を用いた災害軽減に関する研究委員会

#### 話題提供資料

津波数値シミュレーションとリモートセンシングとの融合(越村俊一)

Remotely sensed monitoring tsunami-affected areas: Banda Aceh case」 (Thuy Vu)

GEO (Global Earth Observation) Grid について」(松岡昌志)



# 本日の話題

- ・Banda Acehの津波氾濫の建物被害関数
- ・植生(マングローブ林)の被害関数
- ・植生(マングローブ)の津波減災効果



地震工学会 リモートセンシング研究会

Finite Difference Method of Non-linear Shallow Water Equations

$$\frac{\partial \eta}{\partial t} + \frac{\partial \overline{u}(\eta+h)}{\partial x} + \frac{\partial \overline{v}(\eta+h)}{\partial y} = 0$$

$$\frac{\partial \overline{u}(\eta+h)}{\partial t} + \frac{\partial \overline{u}^2(\eta+h)}{\partial x} + \frac{\partial \overline{u} \overline{v}(\eta+h)}{\partial y} + g(\eta+h)\frac{\partial \eta}{\partial x} + \frac{gn^2}{(\eta+h)^{1/3}}\overline{u}\sqrt{\overline{u}^2 + \overline{v}^2} = 0$$

$$\frac{\partial \overline{v}(\eta+h)}{\partial t} + \frac{\partial \overline{u} \overline{v}(\eta+h)}{\partial x} + \frac{\partial \overline{v}^2(\eta+h)}{\partial y} + g(\eta+h)\frac{\partial \eta}{\partial y} + \frac{gn^2}{(\eta+h)^{1/3}}\overline{v}\sqrt{\overline{u}^2 + \overline{v}^2} = 0$$

$$u, v : \text{Flow velocity}$$

$$\eta : \text{Water elevation}$$

$$h : \text{Still water depth}$$

#### Jason-1 Altimetry Data (Joint Mission of NASA and CNES)

#### 地震工学会 リモートセンシング研究会

地震工学

"研究

リモ・

トセンシ

- Measured the sea surface level across the Indian Ocean approx. 2 hours after the quake.
- The measured tsunami front includes the information of tsunami source especially of the south, which might affect the tsunami to the northern Sumatra
- The tsunami source model, especially the slip amount should be consistent with this data.



## Tsunami Source Model



### Tsunami Source Model

5

6

8.47

9.63

91.88

91.57

125000.0

380000.0

150000.0

150000.0

7.00

7.00

345

7

15

15

90

90

10000

10000

#### 地震工学会 リモートセンシング研究会



Disaster Control Research Center

3.00E+10 3.94E+21

3.00E+10 1.20E+22



## Computational Domain for Inundation Model

地震工学会 <u>リモートセン</u>シング研究会





### Post-tsunami Survey Data



Disaster Control Research Center Tohoku University

リモートセンシング研究会

地震工学会



#### by Matsutomi et al. (2005) and Borrero (2005)

## Model Validation : Inundation Depth





## Model Validation : Water Level

#### 地震工学 リモー トセンシンク



Number in the plot : number of the point measured



## The area underestimated

地震工学会 リモートセンシング研究会







## 確率紙プロット(標準正規累積確率分布関数)





リモートセンシング研究会

地震工学会

## フラジリティ関数(浸水深・被害率)



## フラジリティ関数(流速・被害率)

地震工学会



# 植生(マングローブ林)の被害関数構築

- 現地調査(グランドトゥルース調査) 1.
- 2. 数値解析によるハザード諸量の算定
- 3. 衛星画像解析 (NDVI)
- 4. NDVIの閾値の設定
- 5. 破壊率の算定



Disaster Control Research Center Tohoku University

地震工学会

リモートセンシング研究

地震工学会 対象地域 リモートセンシング研究 0 0.5 1 2 3 4 5km Namkern Thailand . چي ŝ KIROMETERS 0 10 20 40 Rhizophora種 Sonneratia種 C. 1. Avicennia種 Ð Disaster Control Research Center Tohoku University

# マングローブ林破壊状況の調査

#### 地震工学会 リモートセンシング研究会



Disaster Control Research Center Tohoku University

#### 数値解析によるハザード諸量の算定 地震工学会 リモー -トセンシング研究会 Kirometers 0.5 1 10 O Measured Modeled Tsunami Height (m) 8 ° ° o 0 6 4 2 0 0 2000 4000 6000 8000 10000 Distance (m) Disaster Control Research Center Tohoku University

## NDVIの算定とトゥース調査に基づく閾値の設定

地震工学会 リモートセンシング研究会

 $NDVI = \frac{NIR - RED}{NIR + RED}$ 





3 0.44 0.0115 272 0.48 0.42 生存域 0.41 0.0017 289 0.51 0.31 生存域 4 5 0.47 0.0229 272 0.55 0.41 生存域 6 0.3 0.0002 289 0.33 0.26 傾倒域 0.3 0.0327 289 0.41 0.27 傾倒域 7 8 0.27 0.0014 9 0.15 9E-05 289 0.37 0.22 折損域 289 0.18 0.13 折損域



破壊率の算定



地震工学会

リモートセンシング研究会

Department of Urban Environmental Systems, Graduate School of Engineering, Chiba University

# Remotely sensed monitoring tsunami-affected areas: Banda Aceh case

## **Tuong Thuy Vu**

# Available data – Date & Time

4 QuickBird scenes

|                | Acqui. Date  | Acqui. Time (UTC)      | Format        |
|----------------|--------------|------------------------|---------------|
|                |              | (local time: UTC+7hrs) |               |
| Tsunami strike | 2004 June 23 | 04:05:14.09            | Pan-sharpened |
| 2004 Dec. 26   | 2004 Dec. 28 | 04:08:02.96            | Pan-sharpened |
|                | 2005 Aug. 06 | 04:24:57.76            | Pan-sharpened |
|                | 2006 May 16  | 04:32:51.03            | Pan-sharpened |
|                |              | Dry season             | Rainy season  |

Monitoring the changes of land-cover/land-use is feasible





# <section-header>



# A Contract of the processing of the pro

# 2004/06/23 land-cover map

The only scene among 4 ones has a little cloud cover









# **Detailed observation (1)**

Modification of the coastal line, not all is lost but a little gain



# Detailed observation (2)

 Destroy and recovery of aquaculture activities, temporary houses have been built.



# **Detailed observation (3)**

- Vegetation was completely washed away
- The fasted recovery process
- However, it is unplanned vegetation such as grass or bushes
- It unclear if using only NDVI to monitor











| Detailed observation (4-4) - summary                                                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Confusion between buildings, roads and others, esp. in 2004/06/23 scene.                                                                                                                                     |  |
| It seems that in 2004/12/28 scene, the debris class is clearly discriminated.                                                                                                                                |  |
| • In 2005/08/06 scene, the debris of the demolished houses appears as very bright objects, quite easily to be discriminated.                                                                                 |  |
| The newly constructed house dominate the extracted scene of 2006/05/16                                                                                                                                       |  |
| <ul> <li>The different shading of building roof can help to classify to flat<br/>roof and gabled roof (+ shadow dimensions) → 3D<br/>reconstruction of buildings (hipped roof is more difficult).</li> </ul> |  |
| Challenge: How to extract only building?                                                                                                                                                                     |  |
|                                                                                                                                                                                                              |  |

# Discriminate building roof & others

- Object area and shape analysis
- The idea
  - Building roof is often the smaller object compared to bare soil and road
  - Shape analysis, based on the ratio between the skeleton and the area, for example







Long: 0.05028

Rectangle: 0.01717

Round: 0.0



# **Discriminate building roof & others**

• Test on 2006/05/16 scene







Extracted building

# Summary

Many topics to exploit this data set

- Applications (recovery process)
- Improve the image processing algorithms

# **THANK YOU**



































