第3回リモートセンシング技術を用いた災害軽減に関する研究委員会

話題提供資料

震災復興デジタルアーカイブとしての Chi-Chi City on Google Earth の構築 (村尾修)

QuickBird 画像と航空写真による移動体の速度検出(山崎文雄・Liu Wen)

中越沖地震における原子力発電所の被害(中井正一)

震災復興デジタルアーカイブとしての Chi-Chi City on Google Earthの構築

筑波大学大学院システム情報工学研究科 村尾修

Graduate School of Systems and Information Engineering University of Tsukuba www.murao.net

Location of Chi-Chi and the Epicenter

建物復興状況コード表

	コード	被災·復興区分	内容
被	1	全壊	全壊または倒壊した建物
災	2	半壊	半壊した建物
状	3	その他	一部損壊または被害なしの建物
況	4	空地	宅地として利用されていない土地(檳榔畑等)
	11	更地(撤去済)	被害を受け,更地となっている土地
	12	建設中	再建・新築のために建設中の建物
復	13	再建済	被災後に建替えた建物
興	22	修復中	主に半壊を受け修復中の建物
状	23	修復済	主に半壊を受け修復した建物
況	33	新築	空地を利用して新たに建設された建物
	34	撤去中	被災し,瓦礫を撤去中の土地
	43	被害なし	「その他」判定の建物

OM

地震による被災状況(1999年9月21日)

1年後 (2000年9月)

2年11ヶ月後(2002年8月)

4年後(2003年9月)

5年2ヶ月後(2004年12月)

2005年9月(6年経過)

公共空間の空間復興モデル(空間単位量)

集集の街並みと復興の記録媒体として

作成過程

- 1. ベースマップの作成
- 2. 建物壁面の撮影
- 3. 撮影画像の処理
- 4. SketchUp を用いた3 次元空間の創出
- 5. テクスチャーの貼り付け
- 6. 復興過程関連情報の挿入

OM

Counterclockwise Order to Photograph

Examples of the Building Façade

Correction of the Building Façade Images Photographed at the Site

Application of the Elevation Photographs as Textures to the Building Frames

Example of the buildings in the virtual space with exterior walls and roofs (before and after applying the texture)

Landscape of Taiwan on GoogleEarth

Position of the district on GoogleEarth

Example of the information regarding to the reconstruction processes that can be displayed on GoogleEarth

Contents	Information Classification
Location of the facilities	description by Placemark
Explanation of the facilities	text
Image of the reconstruction process	image
Result of the analysis of the reconstruction process	graph, table, data, etc.

		Structure (The Number	Date of	Date of	
ID	Facilities	of Stories)	Construction Start	Construction	
		(Before the	Construction Start	Completion	
01	Chi-Chi Sightseeing Center	Parking Lot	2001/12/1	2006/8/31 Unfinished	
02	He-Ping National Primary School	RC(2F)	1999/9/26	2000/4/27	
03	Chi-Chi Government Office	RC(4F)	2000/4/22	2002/10/15	
04	Chi-Chi Health Center	RC(2F)	2003/4/4	2004/summer	
05	The First Market	RC(3F)	2002/10/30	2004/summer	
06	Chi-Chi Station	Wooden(1F)	2000/4/21	2000/7/24	
07	Railroad Musium	Wooden(1F)	2002/1/2	2002/3/8	
08	Chi-Chi Resort Center	RC(5F)	2000/12/27	2001/12/31	
09	Chi-Chi Public Swimming Pool	-	2000/4/9	2002/11/22	
10	Parking Lot	RC(B2F)	1997/7/9	2001/1/17	
11	Chi-Chi Police Station	RC(3F)	2002/8/10	2004/summer	
12	Chi-Chi Nationarl Junior High School	RC(2F)	2000/6/1	2000/12/1	
13	Chi-Chi Nationarl Primary School	RC(2F)	2000/6/1	2001/3/1	
14	Farmer Bank	RC(3F)	-	2001/12/19	
15	Wu-Chang Temple	RC(3F)	1999/11/1	Preserved	
16	Guang-Sheng Temple	Wooden(1F)	2000/7/1	2003/8/1	
17	Temporary Housing (I) (138+20)	-	1999/10/20	2000/1/28	
18	Temporary Housing (II) (72)	-	1999/9/26	1999/10/13	
19	Temporary Housing (III) (23)	-	1999/9/26	1999/10/13	
20	Permanent Housing constructed by Chi-Chi Governmen	-	2000/8/1	2002/3/1	

Example of displaying the information regarding the reconstruction process using the placemark function

Speed Detection for Moving Objects from Digital Aerial Camera and QuickBird Sensors

September 2007

Fumio Yamazaki¹, Wen Liu¹, T. Thuy Vu²

1. Graduate School of Engineering, Chiba University, Japan.

2. National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.

Background

- Satellite remote sensing and aerial photography have been used to capture **still** (snapshot) images of the earth surface.
- But if two images with a small time interval are taken, they can be employed to detect moving objects, e.g. cars, and even measure their speeds.
- If such data are available, many **new applications** can be considered such as **observing highway traffic conditions**.

Objectives

Demonstrate the possibility and limitation of detecting moving objects from a **QuickBird** (QB) scene using a slight time lag (=0.2 seconds) between panchromatic (PAN) and multi-spectral (MS) sensors.

Develop a new object-based method to extract moving vehicles and subsequently detect their speeds from two consecutive aerial images automatically.

Contents

- Time lag in QB images and moving objects seen in Google Earth
- Visual inspection of vehicle speed from QB images
- Detection of vehicle speed from digital aerial images
- Automated detection of vehicles from aerial images

Time Lag between PAN and MS sensors of QuickBird Images from Japan, USA, Peru, Thailand, Indonesia, Morocco, Iran, Turkey, Algeria

QuickBird Images with PAN and MS

City	Country	Pan Date	Pan second	Multi second	Time lag	Angle
Phuket	Thailand	2002-03-23T04:01:03.062201Z	3.062201	3.290829	0.228628	18.7
Bourmerdes	Algeria	2002-04-22T10:38:03.511477Z	3.511477	3.739662	0.228185	11.2
Nazca	Peru	2002-09-16T15:17:21.362451Z	21.362451	21.566609	0.204158	7.9
Bangkok	Thailand	2002-11-07T03:53:50.219099Z	50.219099	50.419314	0.200215	12.4
Ho Čhi Minh	Vietham	2003-01-24T03:23:00.199687Z	0.199687	0.428753	0.229066	5.8
Al Hoceima	Morocco	2003-05-02T10:52:47.103698Z	47.103698	47.305407	0.201709	9.9
Al Hoceima	Morocco	2003-05-02T10:52:48.132006Z	48.132006	48.360933	0.228927	9.9
Zemmouri	Algeria	2003-05-13T10:26:11.716533Z	11.716533	11.917026	0.200493	8.7
Zemmouri	Algeria	2003-05-13T10:26:11.982056Z	11.982056	12.182562	0.200506	9.9
Zemmouri	Algeria	2003-05-23T10:36:02.233942Z	2.233942	2.437080	0.203138	24.4
El Bahri	Algeria	2003-05-23T10:36:02.245295Z	2.245295	2.448350	0.203055	24.4
Bourmerdes	Algeria	2003-05-23T10:36:02.997635Z	2.997635	3.198562	0.200927	24.4
Zemmouri	Algeria	2003-06-13T10:20:07.060596Z	7.060596	7.286107	0.225511	15.7
Bourmerdes	Algeria	2003-06-13T10:20:07.832587Z	7.832587	8.061467	0.228880	15.7
El Bahri	Algeria	2003-06-18T10:25:17.237030Z	17.237030	17.464350	0.227320	7.8
Bourmerdes	Algeria	2003-06-18T10:25:17.867547Z	17.867547	18.069401	0.201854	7.8
Golcuk	Turkey	2003-07-09T08:34:57.832288Z	57.832288	58.061186	0.228898	24.3
Java	Indonesia	2003-07-11T02:53:46.114738Z	46.114738	46.343444	0.228706	5.9
Java	Indonesia	2003-07-11T02:53:46.126404Z	46.126404	46.356200	0.229796	6.6
Bam	Iran	2003-09-30T06:36:37.696921Z	37.696921	37.925953	0.229032	10.2
Bam	Iran	2003-09-30T06:36:38.315425Z	38.315425	38.517892	0.202467	10.2
Bam	Iran	2004-01-03T06:43:10.872776Z	10.872776	11.074393	0.201617	23.6
Bam	Iran	2004-01-03T06:43:11.086528Z	11.086528	11.288208	0.201680	24.7
Al Hoceima	Morocco	2004-04-21T10:53:54.115946Z	54.115946	54.344776	0.228830	10.2
Al Hoceima	Morocco	2004-04-21T10:53:54.451403Z	54.451403	54.680398	0.228995	9.7
Al Hoceima	Morocco	2004-04-21T10:53:55.104604Z	55.104604	55.306103	0.201499	9.7
Niigata	Japan	2004-10-24T01:14:13.736939Z	13.736939	13.965948	0.229009	47.0
Niigata	Japan	2004-10-24T01:14:15.869887Z	15.869887	16.098831	0.228944	46.9
Niigata	Japan	2004-10-24T01:14:16.178797Z	16.178797	16.406078	0.227281	47.0
Niigata	Japan	2004-10-24T01:14:18.243454Z	18.243454	18.472351	0.228897	46.8
Phuket	Thailand	2005-01-02T04:12:41.455673Z	41.455673	41.681230	0.225557	27.3
Katrina	USA	2005-09-03T16:59:44.549076Z	44.549076	44.749734	0.200658	8.2
Java	Indonesia	2006-06-08T03:09:30.290380Z	30.290380	30.520786	0.230406	42.9
Java	Indonesia	2006-06-13T03:14:21.660828Z	21.660828	21.886511	0.225683	25.3
Java	Indonesia	2006-06-13T03:14:24.784328Z	24.784328	24.987395	0.203067	26.5
Java	Indonesia	2006-07-11T03:25:44.101285Z	44.101285	44.303326	0.202041	15.6

Pansharpened QuickBird Image from Google Earth Tokyo/Narita International Airport, Japan

just take-off $\Delta l=17.8 \text{ m}$ $v = \Delta l/\Delta t$ =17.8/0.2 =89 m/s = 320 km/h

Pansharpened QuickBird Image from Google Earth Manila International Airport, Philippines

just landing Δl =18.1 m v=18.1/0.2=90.5 m/s = 326 km/h

9

Pansharpened QuickBird Image from Google Earth Hong Kong International Airport, China

After take-off $\Delta l=22.1 \text{ m}$ v=22.1/0.2=110.5 m/s = 398 km/h

Pansharpened QuickBird Image from Google Earth Shinkansen train near Toyohashi, Japan

Pansharpened QuickBird Image from Google Earth Sky-train in central Bangkok, Thailand

Pansharpened QuickBird Image from Google Earth **Tokyo-Nagoya Expressway near Isehara**, Japan

Simulated Pansharpened Image Having Small Time-Lag between Panchromatic and Multi-spectral Sensors

Contents

- Time lag in QB images and moving objects seen in Google Earth
- Visual inspection of vehicle speed from QB images
- Detection of vehicle speed from digital aerial images
- Automated detection of vehicles from aerial images

Up: North bound L1~L20 (from left)

Down: South bound R1~R27 (from right)

North bound lanes

Visual inspection results

- **♦**60km/h < v < 120km/h
 - ♦V _{average} =97.93km/h

South bound lanes

- ♦R1~R19: 45km/h<v<90km/h</p>
 - v average =70.92km/h

R20~R27:

The speed is reduced as the cars close to the crossroad.

Result of visual speed detection

The length of the arrows the speed The arrow directions mean the car directions

North bound lanesSouth bound lanes 19

Test of accuracy using simulated QB images

Carry out tests using simulated QB images produced from aerial images to assess the accuracy of visual inspection.

(use 3 aerial images and move the cars in the images to obtain the second images.)

Miyanogi, Chiba, Japan 02/7/20 from PASCO CORP. 0.25m/pixel

Before

Simulated MS image

Resize to 2.4m/pixel

Simulate the Pan image

Pan=(Band1+Band2+Band3)/3

Resize to 0.6m/pixel

After Simulated Pan image

The standard deviation of the **speed** difference between the reference value and detected results is around 11km/h.

The standard deviation of the **azimuth angle** difference between the reference value and detected results is around 13 degrees.

Contents

- Time lag in QB images and moving objects seen in Google Earth
- Visual inspection of vehicle speed from QB images
- Detection of vehicle speed from digital aerial images
- Automated detection of vehicles from aerial images

Digital Aerial Camera: UltraCam D

Figure 6: Color image segment from aerial film (left) with a GSD of 15 cm, obtained from a 12.5µm scan. The UltraCam-image has a GSD of 16 cm (right). The inserts are 2x enlarged and have a diameter of 150 pixels. Note the definition of the railroad track.

http://www.pasco.co.jp/measure/air/ultracam/ http://www.vexcel.com/products/photogram/ultracam/index.html

Speed detection of vehicles from aerial images

High resolution.

- Two consecutive aerial images have 60~80% overlap.
- The **time lag** between two images is **a few seconds**.
- The speed of vehicles can be detected with higher accuracy.

25

Flight Lines of Digital Aerial Photography of Tokyo by GSI

UltraCam D

Date: August 4, 2006 Azimuth Overlap: 80% Lateral overlap: 80% Flight height: 1,400m

Bands: **B,G, R, NIR, Pan** Pixel size: 9.0 µm (Pan, MS) Image size:

11500*7500 pixels (Pan) 3680 * 2400 pixels (MS) Resolution: 12 cm (Pan) 37.5 cm (MS)

Sharpened Multispectral True Color Composite

Sharpened Multispectral False Color Composite

Hamazakibashi, Tokyo 04/8/06 from GSI 0.12m/pixel

-7507.91W -38375.49S

-7474.55W -38358.52S

t=438383.3394-438380.2618=3.0776 s

The targets in the upper lanes: 16 cars.

The targets in the lower lanes: 21 cars.

29

30km/h < v < 50km/h

V _{ave} = 39.7 km/h

10km/h < v < 30km/h V _{ave} =19.0 km/h

The length of the arrows the speed The arrow directions mean the car directions

Contents

- Time lag in QB images and moving objects seen in Google Earth
- Visual inspection of vehicle speed from QB images
- Detection of vehicle speed from digital aerial images
- Automated detection of vehicles from aerial images

Flowchart of automated vehicle extraction

Before

vehicle extraction

After

vehicle extraction

Database (example)

Car ID	X/pixel	Y/pixel	Size/pixel	
1	252	13	89	
2	174	13	55	
3	201	122	447 81	
4	161	172		
5	83 197		53	
6	223	71	225	
7	134	283	153	
Shadow ID	X/pixel	Y/pixel	Size/pixel	
1	261	13	94	
2	190	3	73	
3	217	125	827	
			07	
4	170	171	87	

A shadow object has the same ID as The last ID of shadow means the a car's means it is cast by this car.

after							
Car ID	X/pixel	Y/pixel	Size/pixel				
1	232	18	245				
2	241	31	108				
3	194	133	453				
4	152	192	100				
5	190	3	65				
6	214	84	214				
7	102	180	121				
8	123	290	139				
Shadow ID	X/pixel	Y/pixel	Size/pixel				
1	248	32	90				
3	211	136	798				
4	159	192	75				

number of cars in the scene.

The number of cars is not the same, because of the noise.

Flowchart of speed detection

gree)

	CarID	Distance(pixel)	Speed(km/h)	Direction(degree)				
	1	21.10	94.93	-121.43				
	2	0.00	0.00	0.00	Reference data			
	3	13.04	58.67	-122.47		Distance (pixel)	Speed (km/h)	Direction (de
	4	21.93	98.69	-114.23	1	23.02	103.59	-124.4
	5	18.36	82.61	60.64	2	13.04	58.68	-122.5
	6	15.81	71.15	-124.70	3	23.71	106.7	-117.6
	-				4	18.36	82.62	60.6
	7	13.04	58.67	-147.53	5	16.64	74.88	-122.7
-	Result of speed detection					13.04	58.68	-147.5

The detected result shows good agreement with the reference data.

Summary

- The **time lag** between **Pan and MS bands of QB** images was highlighted to detect **moving objects**.
- The **speeds of vehicles** were visually detected from **QB images**, but accuracy was **not** very high.
- The **speeds of vehicles** were detected from **digital aerial images** with **high accuracy**.
- An object-based automated method of vehicle extraction from aerial images was proposed.