平成21年度 第1回災害リモートセンシング技術の標準化と高度化に関する研究委員会

話題提供資料

- ・「津波被災地探索のための衛星画像解析技術の整備」(越村俊一)
- ・「光学センサ画像の目視判読による 2008 年中国四川地震での 北川県南東部の建物被害分布」(三浦弘之)

津波被災地探索のための衛星 画像解析技術の整備

越村 俊一・萱場真太郎 東北大学大学院工学研究科

これまでの研究

- 高分解能衛星画像の目視判読による建物被害の把握
- 植生指標に着目した浸水域の推定

都市域の津波被害の把握

- 植生指標による浸水域の推定ができない
- 甚大かつ多用な被害とその空間分布
- 瓦礫域, 浸水域, 建物被害, 浸食土壌の混在

オブジェクトベースの画像解析

- オブジェクト指向型画像解析ソフトウェアDefiniensによ る画像処理
- Banda Aceh を撮影した衛星画像に5つのクラスを設定した地表分類を実行し、精度評価を行う

Banda Aceh, QuickBird Image

トレーニングエリアの設定

THE GROUND SURFACE OBJECTS IN THE TRAINING AREA

Ground surface objects	Description for visual interpretation
Vegetation	Green and active vegetation
Water	Land cover change by tsunami inundation (dark black)
Tsunami debris	Rubbles, such as building materials of the destroyed structures
Soil	Land cover (dark brown)
Buildings	Structures with roof remained

画像のセグメント化

PARAMETER SETTING OF THE SEGMENTATION

Parameters for segmentation	value
Scale Parameter	30
Shape Factor	0.5
Layer Weight (B,G,R,IR)	(1.0, 1.0, 1.0, 1.0)
Smooth Weight	1.0
Compact Weight	0.0

地表物の段階的抽出

【オブジェクト】

【土壤】

【瓦礫】

【水没域】

【建造物】

分光観測とスペクトラルライブラリ

- 津波被災地を模した箱庭を作成し、対象物 毎の分光特性やミクセル解析のためのスペ クトラルライブラリを整備する
- 機材:

– スペクトルカメラ: ADC3, TETRACAM社製
– 分光放射計: MS-720, 英弘精機製

MS-720 仕様

11.144	- 4-
忙禄	諸元
型式	MS-720
波長範囲	350~1,050nm
チャンネル数/波長間隔	256ch/3.3nm (PC 上で 700ch/1nm に内挿)
波長精度	$< 0_{\circ} 3nm$
波長分解能(半値幅)	10nm
温度依存性	$\pm 5^{\circ}C(-10 \sim +40^{\circ}C)$
温度制御	なし(温度補償機能つき)
計測単位	W/m ² ∙µm
開口角(全角)	180度(オプション 45度、25度、10度)
迷光	< 0.15%
測定時間	0.005~5 秒/自動調整
使用環境	-10~+40%、0~90%RH(但し結露なきこと)
保存可能データ数	256ch のスペクトルデータを 800 件
通信	USB/RS232C
ソフトウェア	Windows 98SE/2000/XP 対応
外寸·重量	100(W)×160(D)×60(H)800g(電池・開口部込み)

光学センサ画像の目視判読による 2008年中国四川地震での 北川県南東部の建物被害分布

東京工業大学 三浦弘之·翠川三郎

2009/7/7 JAEEリモセン委員委員会

人口:22,000人,死者12,000人(約55%) 壊滅的被害のため,住民は他の土地へ移住 9月には土石流発生のため,建物の流出・埋没が発生

地震前後の衛星画像と実際の被害の比較

地震前後の衛星画像と実際の被害の比較

各被害レベルの地震後衛星画像上の特徴

- •倒壊建物
- 大破程度の 被害建物
- ・軽微な被害ないし :顕著な変化がみられない 無被害建物

:屋根面や輪郭がみえない. 瓦礫の散乱 地すべりによる土砂, 堰止め湖への埋没

:屋根面・輪郭は確認できるが、瓦礫の散乱あり

被害判読結果

被害率の高いXuanping, Qushanで被害率80%以上 被害率の低いYuanmenba, Yonganで10~30%

被害率(%)= (倒壊数+大破数)/全棟数

集落名:被害率(%) Yuli(万里郷):60% Xuanping(旋坪郷):80% Qhsuan(曲山鎮):80% Leigh(擂鼓鎮):55% Daping(大坪):35% Yuanmenba:30% Yongan(永安鎮):15%

断層の上盤側の集落の方 が被害率が高い?

