1. INTRODUCTION

This paper discusses following key issues:
- Seismic retrofitting: Two cases where seismic retrofitting work was carried out by using seismic damping members for greater seismic resistance.
- Buckling restrained brace: Example of the use of buckling restrained braces for seismic retrofitting of high-rise hotel.
- Viscoelastic damper: Example of seismic retrofitting of high-rise hotel using viscoelastic damper.

2. EXAMPLE OF THE USE OF BUCKLING RESTRAINED BRACES FOR SEISMIC RETROFITTING OF HIGH-RISE HOTEL

Outline of the seismic retrofit
- Reduce total building deformation and the load applied to existing columns and beams.
- Low yield strength (225N/mm²) seismic control buckling restrained steel braces absorb seismic energy.
- This hotel has many guest rooms, banquet halls and restaurants. So we has to consider less noise and vibration construction work.
- Bonding method with epoxy resin were used instead of regular anchor connections to connect the seismic control steel braces and existing frames.

3. EXAMPLE OF SEISMIC RETROFITTING OF HIGH-RISE HOTEL USING VISCOELASTIC DAMPER

Outline of the seismic retrofit
- Improve the seismic performance of existing building
- Use the existing building frames and reduce the amount of additional members
 - Reinforcement and upgrading of the earthquake-resistant brace provide on the 5th floor
 - Upgrading of pre-cast concrete walls with buckling restrained braces provided on standard floors (floors 6 through 19) through the addition of viscoelastic dampers.