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ABSTRACT: A simplified nonlinear analysis procedure to predict earthquake responses of 
single-story asymmetric buildings is presented and its applicability is discussed. In this 
procedure, their responses are predicted through a nonlinear static analysis of MDOF model 
and a nonlinear dynamic analysis of equivalent SDOF model, considering the change in the 
first mode shape at each nonlinear stage and the effect of the first and second mode 
contribution. The results show that the responses of torsionally stiff buildings can be 
satisfactorily predicted by the proposed procedure. 
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INTRODUCTION 
 
The estimation of nonlinear response of buildings subjected to a strong ground motion is a key issue 
for the rational seismic design of new buildings and the seismic evaluation of existing buildings 
(ATC-40 1996, FEMA-273 1997). For this purpose, a nonlinear time-history analysis of 
Multi-Degree-Of-Freedom (MDOF) model might be one solution, but it is often too complicated 
whereas the results are not necessarily more reliable due to uncertainties involved in input data. To 
overcome such shortcomings, several researchers have developed simplified nonlinear analysis 
procedures (Saiidi and Sozen 1981, Fajfar 2000, Kuramoto et al. 2000). This approach is a 
combination of a nonlinear static (pushover) analysis of MDOF model and a nonlinear dynamic 
analysis of the equivalent Single-Degree-Of-Freedom (SDOF) model, and it would be a promising 
candidate as long as buildings oscillate predominantly in the first mode. Although the simplified 
procedures have been more often applied to planar frame analyses, some researchers have tried to 
extend them to multi-story asymmetric buildings (Moghadam and Tso 1996, Azuhata et al. 2000, 
Fajfar 2002). However, there still include some problems in the simplified procedure for asymmetric 
buildings: (1) the higher mode response may not be negligible in an asymmetric building, therefore the 
equivalent SDOF model may not be applicable to some buildings. However few investigations 
concerning the application limit have been made. (2) To predict the drift demand at each frame from 
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the pushover analyses of MDOF model, the reasonable force distributions are needed. Since the effect 
of the second mode contribution may be significant for the drift demand at each frame, the force 
distribution should be chosen considering the second mode contribution. Although some researchers 
have tried the applicability of the pushover analysis to predict the drift demand of asymmetric 
buildings (Moghadam and Tso 1998, Kilar and Fajfar 2001), few rational force distributions are 
proposed. 
 
To understand the fundamental response characteristics of asymmetric buildings and to clarify the 
applicability of the simplified procedure to predict their response using equivalent SDOF model, this 
paper discusses the behavior of single-story asymmetric buildings focusing on (1) the index for the 
first modal contribution to overall responses, (2) comparison of the equivalent SDOF model responses 
with MDOF results, and (3) the rational force distributions to predict drift demands at each frame. 
Based on these discussions, a new simplified procedure is proposed. The proposed procedure in this 
paper is the combination of a pushover analysis of MDOF model and a nonlinear analysis of the 
equivalent SDOF model as is in the previous studies (Fajfar 2002), but the change in the first mode 
shape for the equivalent SDOF model and the effect of the second mode contribution for the pushover 
analysis of MDOF model are taken into account. This discussion made in this paper is the basis to 
predict the earthquake response of multi-story asymmetric building with simplified procedure, and the 
applicability of the proposed procedure to multi-story asymmetric buildings will be discussed 
elsewhere. 
 
 

BUILDING AND GROUND MOTION DATA 
 
Building Data 
 
Buildings investigated in this paper are idealized single-story asymmetric buildings: they are assumed 
to be symmetric about the X-axis as shown in Fig. 1. Their story height H is 3.75m. In this study, eight 
analytical models are studied considering following parameters: (1) type of structural plan, (2) 
moment of inertia, and (3) characteristics of transverse frames. 
 
(1) Type of structural plan: Two structural plans are studied as shown in Fig. 1. In each model, the 
column and wall element are placed in frame X1, while only column elements are placed in other 
frames. Yield strength of each element in two models are shown in Table 1. The yield strengths V0 in 
Y-direction of all models are 0.5W (50 % of the total building weight W). All transverse frames of each 
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model are identical and the elastic stiffness in X-direction of the whole building is assumed identical 
with that in Y-direction. Both models are symmetric about the X-axis. 
 
Fig. 2 shows the envelope curve of restoring force-displacement relationship of each element. The 
envelopes are assumed symmetric in both positive and negative loading directions. The Takeda 
hysteretic model (Takeda et al. 1970) is employed for both column and wall elements, assuming that 
they behave in a ductile manner. 
 
(2) Moment of inertia: Several studies within the elastic range have shown that the responses of 
asymmetric buildings are significantly influenced by the ratio of uncoupled torsional frequency to 

Table 1 Yield strength of elements in analytical model 

Yield Strength of Element  Frame 
Column Element Wall Element 

Yield Strength of 
Frame 

X1 0.150W 0.200W 
X2 - X7 

0.050W 
 0.050W Model-1 

Y1, Y2   (0.250W) 
X1 0.150W 0.267W 

X2, X3 
0.117W 

 0.117W Model-2 
Y1 – Y5   (0.100W) 

Note: The yield strengths V0 of all models in Y-direction and those of all N-Series models in 
X-Direction are assumed 0.5W (50 % of the total building weight W). 

 

Note: αy is determined from KE, Vy, and Dy.
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uncoupled translational frequency (Kan and Chopra 1977, Yamazaki 1988, Ohami and Murakami 
2000). To investigate the influence of the frequency ratio on the nonlinear responses of asymmetric 
buildings, two structural series as shown in Fig. 3 are considered. 
Model-TS Series: The unit mass is assumed 1.2 x 103kg/m2. The ratio of uncoupled torsional 
frequency to uncoupled translational frequency is larger than 1. 
Model-TF Series: The moment of inertia I is assumed four times as large as that of Model-TS series, 
while the total mass m is same as Model-TS series: in the TF series, the dimensions of floor diaphragm 
is twice as large as that of Model-TS series, while the unit mass is one-forth of Model-TS series as 
shown in Fig. 3(b). The locations of all frames are the same as Model-TS series. The radius of gyration 
of floor r is defined as Eq. (1). 
 

mIr =  (1)
 
It should be pointed out that r is twice as large as that of Model-TS series. The ratio of uncoupled 
torsional frequency to uncoupled translational frequency is less than 1. 
 
(3) Characteristics of transverse frames: To discuss the influence of the stiffness degradation in the 
transverse frames on the applicability of the simplified procedure, two cases are studied as shown in 
Fig. 2(c) for each model. 
Model-L Series: The transverse frames are assumed linear. This series corresponds to the buildings of 
which transverse frames have much larger strength than longitudinal frames as Japanese typical R/C 
school buildings, due to the presence of shear walls in transverse frames. 
Model-N Series: The transverse frames are assumed nonlinear. The yield strengths V0 in X-direction of 
these models are 0.5W; therefore these models have the same strength in both directions. 
 
Input ground motions 
 
In this study, the earthquake excitation is considered unidirectional in Y-direction, and the following 
six ground motions are used: the NS component of the El Centro record obtained during the 1940 
Imperial Valley earthquake (referred to as ELC), the NS component of the Taft record obtained during 
the 1952 California earthquake (TAF), the EW component of the Hachinohe record obtained during 
the 1968 Tokachi-Oki earthquake (HAC), the NS component of the Tohoku University record obtained 
during the 1978 Miyagiken-oki earthquake (TOH), the NS component of the Kobe Meteorological 
Observatory record and the NS component of the Fukiai record obtained during 1995 Hyogo-ken 
Nanbu Earthquake (KMO and FKI, respectively). The first 25 seconds of each record are used in this 
study. All ground motions are scaled so that the maximum drift of a Takeda SDOF model having the 
yield strength of 0.5W reach the drift angle of 1/100. The normalized absolute acceleration response 
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Fig. 4 Normalized acceleration response spectra 

Table 2 List of ground motion 

Ground Motion  
Record ID 

Original 
PGA 
(m/s2) 

Amplification 
Factor 

ELC 3.417 1.079 
TAF 1.572 2.452 
HAC 1.829 1.423 
TOH 2.582 0.994 
KMO 8.178 0.398 
FKI 8.020 0.561  
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spectra with 3% critical damping for 6 ground motions are shown in Fig. 4. Table 2 shows the original 
PGA and amplification factor for all ground motions. 
 
Numerical analysis procedure 
 
In this study, the damping matrix is assumed proportional to the instant stiffness matrix and 3% of the 
critical damping for the first mode. Newmark-β method ( )41=β  is applied in numerical 
integrations. The time increment for numerical integration is 0.005 sec. The unbalanced force due to 
stiffness change is corrected at a next time step during analysis. 
 
 

TORSIONALLY STIFF BUILDINGS AND TORSIONALLY FLEXIBLE BUILDINGS 
 
In this chapter, the asymmetric building models are classified based on their dynamic characteristics. 
The equation of motion of undamped free vibration of single-story asymmetric buildings can be 
written as Eq. (2). Since the asymmetric buildings considered in this paper are symmetric about X-axis 
and the earthquake excitation is considered unidirectional in Y-Direction, only 2 degrees of freedom 
(displacement at the center of mass in Y-direction y and rotational angle θ) are considered in Eq. (2). 
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where  [ ] 







=

I
m

M
0

0 : mass matrix, [ ] 
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⋅−
=

θKeK
eKK

K
KY

KYY : elastic stiffness matrix, 

{ } { }Tyd θ= : vector representing displacement at the center of mass and rotation, m: mass, I: 
moment of inertia, KY: elastic lateral stiffness in Y-direction, 2jKK Y ⋅=θ : elastic torsional stiffness 
with respect to the center of mass, eK : elastic eccentricity, j : radius of gyration of story stiffness with 
respect to the center of mass. By substituting Eqs. (3) and (4) into Eq. (2), Eq. (5) is obtained. 
 

rjJ,reE,rz K ==⋅=       θ  (3)
( ) YYYY JmKrjIK,mK 000    ωωω θθ ⋅=⋅===  (4)









=















−

−
+









0
01

2
2

0 z
y

JE
E

z
y

Yω
&&

&&  (5)

 
where E is the eccentricity ratio, J is the radius ratio of gyration of story stiffness, ω0Y and ω0θ are the 
uncoupled translational frequency and uncoupled torsional frequency, respectively. Note that J equals 
the ratio of uncoupled torsional frequency to uncoupled translational frequency as shown in Eq. (4) 
(Ohami and Murakami 2000). The i-th natural frequency ωi and i-th mode shape vector {φi}={φYi, 
φΖi}T of the single-story asymmetric building models can be obtained from Eq. (5) as shown in Eqs. (6) 
and (7). 
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Fig. 5 shows the definition of torsionally stiff (TS) buildings and torsionally flexible (TF) buildings. In 
this figure, the distance from the center of mass G to the center of rotation of i-th mode Oi is obtained 
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by Eq. (8). 
 

ZiYiiYii r φφφφρ ⋅== Θ  (8)
 
In this study, the building model is classified as TS building when ρ1 is larger than ρ2, and it is 
classified as TF buildings when ρ1 is smaller than ρ2. By substituting Eq. (7) into Eq. (8), Eq. (9) can 
be obtained. 
 

( ){ } EJr Yii
2

0
2 ωωρ −=  (9)

 
Eq. (10) is obtained from Eqs. (6) and (9). 
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In Eq. (10), ( ) ( ) 02

01
2

02 >− YY ωωωω  because ω2 > ω1. Therefore the relationship of ρ1 and ρ2 is 
expressed as Eq. (11). 
 









>>
==
<<

1for 
1for 
1for 

21

21

21

J
J
J

ρρ
ρρ
ρρ

 (11)

 
Eq. (11) reveals the buildings with J > 1 are classified as TS buildings, while those with J < 1 are 
classified as TF buildings. Table 3 shows the model parameters: E, J, and eccentricity ratio in 

Table 3 Model parameters 

Torsionally Stiff (TS) Buildings Torsionally Flexible (TF) Buildings 
 E J Re  E J Re 

Model-1-TS-L/N 0.850 1.509 0.682 Model-1-TF-L/N 0.425 0.755 0.682 
Model-2-TS-L/N 0.634 1.418 0.500 Model-2-TF-L/N 0.317 0.709 0.500 

Y

φYi

X

m,I

Oi

ρi = |φYi/φΘi|

G

Note: {φi} = {φYi, φΘi}
T: i-th mode shape vector

           ρi : distance from G to Oi
           Oi  : center of rotation of i-th mode
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Fig. 5 Definition of torsionally stiff (TS) building and torsionally flexible (TF) building 
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accordance with Japanese Standard of Seismic Design of Buildings Re, and Fig. 6 shows the natural 
periods and mode shapes of each model. They show that Model-TS series are classified in TS 
buildings, while Model-TF series are classified in TF buildings. Table 3 also shows that Re of all 
building models is larger than 0.3 and therefore these building models have extremely large 
eccentricity. It should be pointed out that Re of TF buildings are same as those of TS buildings. This 
indicates that the influence of the frequency ratio on the dynamic characteristics of asymmetric 
buildings is not taken into account in Re. 
 
 

EQUIVALENT SDOF MODEL 
 
The equation of motion of a single-story asymmetric building model can be expressed as Eq. (12).  
 

[ ]{ } [ ]{ } { } [ ]{ } gaMRdCdM ⋅−=++ α&&&  (12)
 
where  [ ]C : damping matrix, { } { }T

ZY TVR = : vector representing restoring forces(shear force and 
torque at the center of mass), { } { }T01=α : vector defining the direction of ground motion, ag: ground 
acceleration. 
 
The displacement and restoring force vectors are assumed in the form of Eq. (13) even if the building 
responds beyond the elastic range. 
 

{ } { } { } { } { } { }2121    RRR,ddd +=+=  (13)
{ } { } { } [ ]{ } *

iiii
*
iiii AMR,Dd ⋅Γ=⋅Γ= φφ     (14)
{ } [ ]{ }
{ } [ ]{ }iT

i

T
i

i M
M

φφ
αφ

=Γ  (15)

 
where  {di}: i-th modal displacement, {Ri}: i-th modal restoring force, Di

*: i-th modal equivalent 
displacement, Ai

* : i-th modal equivalent acceleration, Γi: i-th modal participation factor. 
 
Note that the mode shape vector{ }iφ  varies depending on the stiffness degradation. In this study, { }iφ  
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is determined from the secant stiffness defined at the maximum deformation previously experienced in 
the calculation. 
 
Di

* and Ai
* can be rewritten as Eq. (16) from Eqs. (13) through (15). 

 
{ } [ ]{ } { } { } *

i
T

ii
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i

*
i

*
i

*
i

T
ii

*
i MRMRA,MdMD φφ Γ==Γ=     (16)

{ } [ ]{ }( )i
T

iii MM φφ2* Γ=  (17)
 
where: M1

*: i-th modal equivalent mass, { } { }RR T
iii φΓ=* : i-th modal equivalent restoring force. 

 
Assuming that the predominant first mode oscillation and neglecting the second mode of the building, 
Eq. (13) can be rewritten as Eq. (18). 
 

{ } { } { } [ ]{ } ** AMR,Dd 111111    ⋅Γ=⋅Γ= φφ  (18)
 
By substituting Eq. (18) into Eq. (12) and by multiplying { }T

11 φΓ from the left side, the equation of 
motion of the equivalent SDOF model is obtained as Eq. (19). 
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where C1

* is the first modal equivalent damping coefficient defined by Eq. (20). 
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*
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APPLICABILITY OF THE EQUIVALENT SDOF MODEL 
 
The equivalent SDOF model described in the previous chapter is fundamentally based on the 
assumption that buildings oscillate predominantly in the first mode throughout the responses. In this 
chapter, the applicability of the model to asymmetric buildings is discussed focusing on: (1) the 
equivalent modal mass ratio representing the modal contribution to overall response, (2) comparisons 
of the modal responses between TS and TF buildings, and (3) comparison of responses between the 
equivalent SDOF model and MDOF model. 
 
Equivalent modal mass ratio 
 
To understand the first modal contribution to overall response, the equivalent modal mass ratio mi

* 
defined by Eq. (21) is employed. 
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The equivalent modal mass ratio mi

* varies from 0 to 1 and the sum for all modes is unity. When m1
* is 

equal to 1.0, the response of the MDOF model is governed totally by its first mode. The equivalent 
modal mass ratio m1

* therefore can be a good index for the first modal contribution to overall response. 
Eq. (17) can be rewritten as Eq. (22) from Eqs. (1), (8) and (15).  
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Substituting Eq. (22) into Eq. (21), Eq. (23) is obtained. 
 

( )21
1

i

*
i r

m
ρ+

=  (23)

 
Eq. (23) indicates that m1

* equals 1 when the first mode response is purely translational ( ∞=1ρ ), 
while m1

* equals 0 when the first mode response is purely torsional ( 01 =ρ ). This equation also 
indicates that m1

* is larger than m2
* for TS buildings (ρ1 > ρ2), while m1

* is smaller than m2
* for TF 

buildings (ρ1 < ρ2). 
 
Fig. 7 shows the contour line of m1

* on the E-J plane. This figure shows that m1
* is larger than 0.5 for 

TS buildings (J > 1), but smaller than 0.5 for TF buildings (J < 1). This implies that TS buildings have 
relatively large m1

* value and may respond predominantly in the first mode while TF buildings may be 
significantly influenced by the second mode. 
 
Modal response contribution to overall response 
 
To investigate the difference of modal response contribution between TS and TF buildings, their 
time-history responses are decomposed into “modal” components. The decomposition procedure is 
summarized below in a step-by-step form: 
 
1) Carry out a nonlinear time-history analysis of MDOF model. 
2) Determine the equivalent stiffness of element at each step from the time-history response analysis. 

In this study, the equivalent stiffness of each element is defined by its secant stiffness at the 
maximum deformation previously experienced. 

3) Determine the mode shapes { }( )2,1=Γ iii φ  at each step from the equivalent stiffness. 
4) Determine the i-th modal equivalent displacement Di

* from Eq. (16). 
5) Determine the i-th modal displacement{ }id  from Eq. (14). 
 
Figs. 8 and 9 show the decomposed displacement at the center of mass y, rotational angle θ for 
Model-1-TS-L and Model-2-TF-L, respectively, subjected to TOH ground motion. 
As can be found in these figures, the first mode response has a high contribution to the overall 
response in TS building, whereas the second mode response is not negligibly small in TF building. It 
should be also pointed out that m1

* is more than 0.8 and stable throughout the response in TS building 
but it is less than 0.5 for the first 8 sec. and tends to increase monotonically in TF building. These 
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results conclude that the asymmetric building studied herein oscillates predominantly in the first mode 
only when it is classified in TS building. 
 
Applicability of equivalent SDOF model to asymmetric buildings 
 
The results obtained in the previous section imply that the equivalent SDOF model can be limitedly 
applied to the TS buildings that may oscillate predominantly in the first mode. To confirm its 
applicability, the nonlinear dynamic time-history analysis results of equivalent SDOF models are 
further compared with those of MDOF models. The detailed numerical analysis procedure can be 
found in APPENDIX A. 
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Figs. 10 and 11 show the ratio of maximum drift at stiff-side frame (Frame X1 for both Model-1 and 
Model-2), center of mass (Frame X4 for Model-1 and Frame X2 for Model-2, respectively), 
flexible-side frame (Frame X7 for Model-1 and Frame X3 for Model-2, respectively) and the 
transverse frame (Frame-Y1 for both Model-1 and Model-2) predicted by the equivalent SDOF model 
to MDOF model. These figures reveal satisfactory agreement in TS buildings except stiff-side frame in 
Model-1-TS-N and Model-2-TS-N, but significant difference in TF buildings. The reason why the 
maximum drift at stiff-side frame is significantly underestimated in Model-1-TS-N and Model-2-TS-N 
will be discussed later. 
 
To understand the different characteristics between two structural series, the responses of 
Model-1-TS-L and Model-2-TF-L subjected to TOH ground motion are compared in Figs. 12 and 13. 
These figures show that the response of the MDOF model and the equivalent SDOF model agrees well 
in Model-1-TS-L while they differ significantly in Model-2-TF-L. This concludes that the equivalent 
SDOF model can be limitedly applied to TS buildings. Therefore, the discussion in the following 
sections will be limited to the TS buildings. 
 
Influence of mode shape change 
 
In the previous section, the applicability of the equivalent SDOF model to the asymmetric building is 
discussed. However, as can be easily understood from the equation of motion of the equivalent SDOF 
model, the mode shape assumption is another essential factor to obtain a satisfactory estimation of 
structural response from the equivalent SDOF model. In the previous discussions of this paper, the 
first mode shape beyond the elastic range is found from the secant stiffness of elements, and the 
variable mode shape is taken into account in the nonlinear response analyses. To investigate its 
influence on the response estimation, the results are compared with those assuming a constant first 
mode shape based on the elastic stiffness throughout the response. 
 
Fig. 14 compares the response displacement ratio (Equivalent SDOF/MDOF) at the center of mass and 
rotation for two models, i.e., variable and constant mode shape models. The figure shows a remarkable 
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difference in two models and the constant mode shape models significantly underestimate the 
displacement at center of mass and overestimate the rotation obtained by MDOF responses. 
 
Figs. 15 and 16 show the A1

* - D1
* relationship of Model-1-TS-L and Model-2-TS-L obtained from the 

pushover analysis. It shows that A1
* of the “constant” mode shape model is much larger than that of 

“variable” model, which is resulted from (1) the underestimated modal equivalent mass M1
* and (2) 

the overestimated modal equivalent restoring force R1
* to calculate A1

* defined in Eq. (16). 
It is therefore essential to incorporate the change in the first mode shape to obtain more accurate 
responses of asymmetric buildings through the equivalent SDOF models. 
 
 
PREDICTION OF DRIFT DEMAND USING PUSHOVER ANALYSIS OF MDOF MODEL 
 
Fig. 10 has shown that the equivalent SDOF model underestimates the drift demand at stiff-side frame 
obtained by MDOF model even for TS buildings (Model-1-TS-N, Model-2-TS-N). The estimation of 
the drift demand at stiff-side frame may be critical if it consists of brittle elements and the flexible-side 
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frame consists of ductile elements. As discussed later in detail, this implies that the influence of the 
second mode contribution may be significant at the stiff-side frame, and therefore it should be 
considered for a better prediction of the drift demand. Dr. Matsumori et al. proposed a procedure to 
predict the demands of planar frame structures by pushover analysis using two different force 
distributions considering the first and second mode contribution (Matsumori et al. 2002). In this 
chapter, the applicability of that procedure to the asymmetric TS buildings is discussed focusing on: 
(1) the influence of the stiffness degradation in transverse frames on the response of TS buildings and 
(2) comparisons of the dynamic analysis results and the pushover analyses results. 
 
Influence of the stiffness degradation in transverse frames on the response of TS buildings 
 
To understand the influence of the stiffness degradation in transverse frames on the nonlinear response 
of TS buildings, pushover analyses are carried out. In this study, the following assumptions are made 
to impose displacements on the MDOF model:  
 
1) The equivalent stiffness of elements can be defined by their secant stiffness at a maximum 

deformation previously experienced in the calculation. 
2) The first mode shape at each loading stage can be determined from the equivalent stiffness. 
3) The deformation shape imposed on a model is same as the first mode shape obtained in 2). 
 
The detailed procedure can be found in APPENDIX B. 
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Figs. 17 and 18 compare the nonlinear characteristics of Model-L (Model-1-TS-L, Model-2-TS-L) and 
Model-N (Model-1-TS-N, Model-2-TS-N). These figures reveal that the nonlinear characteristics of 
both series differ significantly. In Model-N series, the rotational angle θ increases almost linearly as 
the displacement y increases due to the stiffness degradation of the transverse frames while the 
increase of the rotation is less significant in Model-L series. It should be pointed out that equivalent 
first modal mass ratio m1

* increases monotonically in Model-L series, while m1
* decreases slightly but 

keeps a value of above 0.7 throughout analysis in Model-N series. This implies that the stiffness 
degradation of the transverse frames may increase the second mode contribution. 
 
To understand the influence of the stiffness degradation of the transverse frames on dynamic response 
of TS buildings, the responses of Model-1-TS-L and Model-1-TS-N subjected to TOH ground motion 
are compared in Figs. 19 and 20. These figures show that the response of the MDOF model and the 
equivalent SDOF model agrees well at both Frame X1 and Frame X7 in Model-1-TS-L, while they 
differs significantly at Frame X1 in Model-1-TS-N. 
 
Procedure for estimating drift demand using two different pushover analyses 
 
In this section, the applicability of the procedure proposed by Dr. Matsumori at al. (Matsumori et al. 
2002) to the asymmetric TS buildings is discussed. 
 
Fig. 21 shows the concept of the procedure using two different pushover analyses. The outline of the 
procedure is summarized below: 
 
1) Pushover Analysis to first mode response (referred to as Pushover-1) 
1-1) Calculate the equivalent displacement D1

*
MAX by equivalent SDOF model. 

1-2) Determine the drift demand based on the first mode response from the results of the pushover 
analysis and D1

*
MAX obtained from 1). 

2) Pushover Analysis to sum of modal forces (referred to as Pushover-2) 
2-1) Determine the sum of modal force distribution {f}+ from response spectrum. 
2-2) Carry out the pushover analysis using the sum of modal forces until the equivalent displacement 

D* reaches D1
*

MAX obtained from 1-1). 
3) Determine the drift demand by the envelope of (a) Pushover-1 obtained from 1) and (b) 

Pushover-2 obtained from 2). 
 
This procedure is applied to asymmetric buildings in this study, while it is originally applied to planar 
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frames in the previous study (Matsumori et al. 2002). To apply the procedure to asymmetric buildings, 
the following two modifications are made as described below. 
 
(1) Calculation of equivalent displacement: Since the change of the first mode shape is considered 
in this study, the equivalent displacement for the pushover analysis using the sum of modal forces 
distribution D* is calculated by Eq. (24). 
 

{ } [ ]{ }
{ } [ ]{ }αφ
φ

M
dMD T

ieie

T
ieie

11

11*

Γ
Γ

=  (24)

 
where: { }ieie 11 φΓ : first mode shape at D1

*
MAX. The pushover analysis is carried out until D* obtained by 

Eq. (24) reaches D1
*

MAX. 
 
(2) Determination of the sum of modal force distribution: The sum of modal force distribution {f}+ 
is determined by Eq. (25) (Matsumori et al. 2002). 
 

{ } [ ] { } { }( )22211 φαφ Γ+Γ= ++ Mf  (25)
 
where: α2+: ratio of the second mode contribution to the first mode contribution determined by Eq. 
(26). 
 

122 AA SS⋅= ++ γα  (26)
 
where: γ+: coefficient expressing the phase of both first and second modes and it is assumed as unity in 
for its simplicity (Matsumori et al. 2002), and SA2 / SA1 is the ratio of response acceleration spectrum. 
 
To simplify Eq. (26), another assumption is introduced as Eq. (27). 
 

1122 ==+ AA SSα  (27)
 
Note that Eq. (27) is valid only for the low-rise buildings with short predominant periods. Substituting 
Eq. (27) into Eq. (25), {f}+ is obtained by simpler form as Eq. (28). 
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{ } [ ] { } { }( ) [ ]{ }αφφ MMf =Γ+Γ=+ 2211  (28)

 
From assumptions expressed by Eqs.(26) and (27), {f}+ is simplified as that the only lateral force is 
applied at C.M. as shown in Fig. 21(b), even if {φ1} and {φ2} vary in the nonlinear stage. 
 
Fig. 22 shows the comparison of the drift in each frame obtained from time-history analysis of MDOF 
models subjected to TOH ground motion, predictions by the Pushover-1, and Pushover-2. This figure 
shows that the envelope of the results obtained by two different pushover analyses can approximate 
the results of time-history analysis of MDOF models. Fig. 23 shows the ratio of maximum drift at 
stiff-side frame (Frame X1 for both Model-1 and Model-2), center of mass (Frame X4 for Model-1 
and Frame X2 for Model-2, respectively), flexible-side frame (Frame X7 for Model-1 and Frame X3 
for Model-2, respectively) and the transverse frame (Frame-Y1 for both Model-1 and Model-2), 
predicted by the envelope of the two different pushover analyses and time-history analysis of MDOF 
model. This figure shows that the predictions at stiff-side frame are improved in Model-1-TS-N and 
Model-2-TS-N from the results shown in Fig. 10. 
 
 

SIMPLIFIED NONLINEAR ANALYSIS PROCEDURE AND APPLICATION EXAMPLE 
 
Based on the results obtained above, a simplified nonlinear analysis procedure for single-story 
asymmetric TS buildings is proposed. 
 
Outline of the procedure 
 
The outline of the proposed procedure is described as follows. 
 
STEP 1: Pushover analysis of MDOF model 
STEP 2: Determination of simplified equivalent SDOF model properties 
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STEP 3: Nonlinear dynamic analysis of simplified equivalent SDOF model 
STEP 4: Estimation of drift demand in each frame of MDOF model 
 
The procedure required in each step is described below. 
 
STEP 1: A pushover analysis of a MDOF model is carried out to obtain the force - displacement 
relationship, considering the change in the first mode shape at each nonlinear stage described in 
Appendix B. 
 
STEP 2: The equivalent acceleration A1

*- displacement D1
* relationship of the simplified equivalent 

SDOF model is determined from the results of STEP 1. Since the deformation shape {d} having the 
first mode shape is imposed on the original model as described in STEP 1, A1

* and D1
* in Eq. (16) can 

be rewritten as Eq. (29). 
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Then the A1

*- D1
* relationship is idealized by a tri-linear line so that the hysteretic energy dissipation 

enclosed by the original curve and the tri-linearly idealized line is same. In this study, the SDOF 
model idealized by a tri-linear curve is referred to as a “simplified equivalent SDOF model”. 
 
STEP 3: A nonlinear dynamic analysis of the simplified equivalent SDOF model is carried out to 
obtain the displacement demand D1

*
MAX. 

 
STEP 4: The drift in each frame of the original model based on the first mode response is determined 
from the results of STEP 1 and 3. By substituting D1

*
MAX obtained in STEP 3 into Eq. (14), {d} and 

hence the drift demand in each frame based on the first mode response can be found. Then, another 
pushover analysis is carried out using the sum of modal force distribution determined from Eq. (28) 
until D* obtained by Eq. (24) reaches D1

*
MAX. The drift demand in each frame of the original model is 

determined from the envelope of both pushover analyses. 
 
Application examples 
 
The nonlinear responses of TS buildings (Model-1-TS-L, Model-2-TS-L, and Model-1-TS-N, 
Model-2-TS-N) are estimated by the simplified procedure proposed above. 
 
The correlation of drifts at the stiff-side frame, the center of mass and the flexible-side frame of each 
model obtained from the MDOF model and the simplified procedure are compared in Fig. 24. These 
figures show that the simplified procedure proposed herein successfully estimates the nonlinear 
responses of TS buildings. 
 
 

CONCLUSIONS 
 
A simplified nonlinear analysis procedure to estimate the earthquake response of single-story 
asymmetric building is presented and its applicability is discussed. The major findings obtained in this 
study can be summarized as follows. 
 
1) Single-story asymmetric buildings oscillate predominantly in the first mode when they are 

classified in torsionally stiff (TS) buildings, while their responses are influenced significantly by 
the second mode when they are classified in torsionally flexible (TF) buildings. 
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2) The equivalent SDOF model can be limitedly applied to TS buildings. To identify the TS building, 
the equivalent modal mass ratio m1

* can be a good index. 
3) It is essential to incorporate the change in the first mode shape to obtain more accurate responses 

of asymmetric buildings through the equivalent SDOF models. 
4) The drift demand at stiff-side frame may be significantly underestimated by equivalent SDOF 

model due to the stiffness degradation of the transverse frames. To overcome this problem, the 
procedure using two different pushover analyses considering the first and second mode 
contribution is proposed. The predictions at stiff-side frame can be improved by the proposed 
procedure. 

5) The response of TS buildings can be satisfactorily estimated by the simplified nonlinear analysis 
procedure proposed in this study. In TS buildings investigated in this paper, m1

* is larger than 0.7, 
and the proposed procedure provides the satisfactory estimations. 

 
The discussions in this paper are limited to single-story asymmetric buildings subjected to 
unidirectional ground motion. To extend the proposed procedure to a multi-story asymmetric building, 
however, it is most essential to develop a rational scheme to find its equivalent SDOF model. The 
extension of the procedure to a multi-story asymmetric building is the next phase of this study. And 
because the number of modes increases in case of multi-story asymmetric buildings, the equivalent 
modal mass ratio m1

* may be smaller even if they oscillate predominantly in the first mode. Further 
study is needed to quantify the application limit of the equivalent SDOF model. 
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APPENDIX A. NONLINEAR ANALYSIS OF EQUIVALENT SDOF MODEL 
 
The procedure for nonlinear analysis of equivalent SDOF model is summarized below in a 
step-by-step form: 
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1) Set a ground acceleration at next step gn a1+ . 

2) Assume the relative acceleration of equivalent SDOF model at the next step as 111 DD nn
&&&& =+ . 

3) Determine the first mode vector at the current step { }11 φnnΓ . 
4) Assume the first mode vector at the next step as { } { }111111 φφ nnnn Γ=Γ ++ . 
5) Calculate the relative velocity *

11 Dn
&

+  and the relative displacement *
11 Dn+  of equivalent SDOF 

model at the next step by Eqs. (A1) and (A2). 
 

( ) 2111111 tDDDD *
n

*
n

*
n

*
n ∆⋅++= ++

&&&&&&  (A1)
( ) 2

11
2

11111 21 tDtDtDDD *
n

*
n

*
n

*
n

*
n ∆⋅⋅+∆⋅−+∆⋅+= ++

&&&&& ββ  (A2)
 
6) Calculate the displacement by equation (A3). 
 

{ } { } *
1111111 Dd nnnn ++++ ⋅Γ= φ  (A3)

 
7) Determine the deformation and restoring force of each element and calculate the restoring force 

{ }Rn 1+ . 
8) Determine the first mode shape { }1111 φ++ Γ nn  from the secant stiffness defined at the maximum 

deformation previously experienced. 
9) Repeat steps 5) through 7) until { }1111 φ++ Γ nn  calculated in step 8) falls within an allowable band 

from the assumed first mode shape. 
10) Calculate the equivalent mass n+1M1

*, the equivalent damping coefficient n+1C1
*, and the equivalent 

acceleration n+1A1
* from Eqs. (A4) through (A6). 

 
{ } [ ]{ }( )1111

2
11

*
11 φφ ++++ Γ= n

T
nnn MM  (A4)

{ } [ ]{ }( )11111
2

11
*
11 φφ +++++ Γ= nn

T
nnn CC  (A5)

{ } { } *
nn

T
nn

*
n MRA 111111111 +++++ Γ= φ  (A6)

 
11) Calculate the relative acceleration of equivalent SDOF model *

11 Dn
&&

+  by Eq. (A7). 
 

( ) *
n

*
n

*
n

*
ngn

*
n ADMCaD 11111111111 ++++++ −⋅−=− &&&  (A7)

 
12) Repeat steps 4) through 11) until *

11 Dn
&&

+  calculated in step 11) falls within the allowable band 
from the assumed relative acceleration. 

 
 

APPENDIX B. PUSHOVER ANALYSIS PROCEDURE CONSIDERING THE CHANGE IN 
THE FIRST MODE SHAPE AT EACH NONLINEAR STAGE 

 
The pushover analysis procedure considering the change in the first mode shape at each nonlinear 
stage is summarized below in a step-by-step form: 
 
1) Set a displacement increment at the next step yn ∆+1 . 
2) Determine the first mode vector at the current step { }11 φnnΓ . 
3) Assume the first mode vector at the next step as { } { }111111 φφ nnnn Γ=Γ ++ . 
4) Calculate the displacement by Eq. (A8). 
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{ } { } *
1111111 Dd nnnn ++++ ⋅Γ= φ  (A8)

where ( ) 11111 Γ∆+= +++ nnn
*

n yyD  (A9)
 

5) Determine the deformation and restoring force of each element. 
6) Determine the first mode vector { }1111 φ++ Γ nn  from the secant stiffness defined at the maximum 

deformation previously experienced. 
7) Repeat steps 4) through 6) until { }1111 φ++ Γ nn  calculated in step 6) falls within an allowable band 

from the assumed first mode shape. 
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