SOURCE CHARACTERISTICS OF AFTERSHOCKS FOR THE 2008 IWATE-MIYAGI NAIRIKU EARTHQUAKE AND SITE AMPLIFICATION AROUND THE SOURCE REGION BASED ON SPECTRAL INVERSION TECHNIQUE

Takeshi Kimura¹, Teito TAKEMOTO², Masaru TSUKAGOSHI³, Minoru SAKAUE⁴, Hiroe MIYAKE⁵, and Kazuki KOKETSU⁶

 ¹ Researcher, National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan, tkimura@bosai.go.jp
² Graduate Student, Earthquake Research Institute, University of Tokyo, Tokyo, Japan, teito@eri.u-tokyo.ac.jp
³ Shimizu Corporation, Tokyo, Japan
⁴ Member of JAEE, Technical Officer, Earthquake Research Institute, University of Tokyo, Tokyo, Japan, sakaue@eri.u-tokyo.ac.jp
⁵ Member of JAEE, Assistant Professor, Earthquake Research Institute, University of Tokyo, Tokyo, Japan, hiroe@eri.u-tokyo.ac.jp
⁶ Member of JAEE, Professor, Earthquake Research Institute, University of Tokyo, Tokyo, Japan, koketsu@eri.u-tokyo.ac.jp

ABSTRACT: We performed temporary strong motion observation in the source region of the 2008 Iwate-Miyagi Nairiku earthquake. Based on aftershock records at the temporary stations and K-NET/KiK-net stations, we applied spectral inversion to estimate source, propagation path, and site amplification effects. The estimates of stress drop for the aftershocks are within a range of 0.1-2 MPa. Spatial pattern of stress drop was seen; approximately 1 MPa near the large slip region and 0.5 MPa or less at the northern and southern edges of the fault plane. Site amplification factors at 0.5-1 Hz are 1-3 times for the near-source stations and 0.8-2 times for stations on the east-southeastern side of IWTH26. On the other hand, site amplification factors at 1-7 Hz are 3-8 times for the near-source stations, and 1-3 times for the stations on the east-southeastern side of IWTH26. Site amplification factors at the HND0FF station located above the top edge of the mainshock fault plane have different characteristics; 3 times at 0.5 Hz, about 1 time at 1-7 Hz, and a spectral sag at 3 Hz. For the propagation path effect in the fore-arc region within 100 km of the source region, Q_S is estimated to be $40f^{1.0}$ in a frequency range of 0.5-7 Hz.

Key Words: Source Characteristics, Site Amplification, Spectral Inversion Technique, Temporary Strong Motion Observation